Spray deposition of nanostructured metal films using hydrodynamically stabilized, high pressure microplasmas

Cu, Pd, and Ni nanoparticles and films compose of fibers, matchsticks, and dense columns were grown using a hydrodynamically stabilized, high pressure (∼Torr) microplasma jet source at low substrate temperatures. Organometallic precursors were dissociated in the microplasma jet under highly reducing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vacuum science & technology. A, Vacuum, surfaces, and films Vacuum, surfaces, and films, 2013-11, Vol.31 (6)
Hauptverfasser: Koh, Travis L., Gordon, Michael J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Journal of vacuum science & technology. A, Vacuum, surfaces, and films
container_volume 31
creator Koh, Travis L.
Gordon, Michael J.
description Cu, Pd, and Ni nanoparticles and films compose of fibers, matchsticks, and dense columns were grown using a hydrodynamically stabilized, high pressure (∼Torr) microplasma jet source at low substrate temperatures. Organometallic precursors were dissociated in the microplasma jet under highly reducing conditions, creating a directed flux of active metal species for the subsequent growth of nanostructured films. The growth process can be tuned (e.g., from nanoparticles, to competitive columns, to dense films with nanoscale grain structure) by adjusting the precursor flux, plasma current, background gas atmosphere, and jet–substrate distance. Microplasma jet operation, dynamics of the growth process, and the resulting metallic films are discussed.
doi_str_mv 10.1116/1.4825129
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1116_1_4825129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1116_1_4825129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-644fd56121807df24d6e4b8c5e90a8511fd0782e776c7077421f694a3a1bb22a3</originalsourceid><addsrcrecordid>eNqd0E1LxDAQgOEgCq6rB_9BropdM2natEdZ_IIFD-q5TJtkN5J-kOkK9de7yy549zSXZ2bgZewaxAIA8ntYqEJmIMsTNoNMiqTIsvKUzYROVSJBwDm7IPoSQkgp8hkL70PEiRs79ORH33e8d7zDrqcxbptxG63hrR0xcOdDS3xLvlvzzWRib6YOW99gCBOnEWsf_I81d3zj1xs-REu02-Y7EfshILVIl-zMYSB7dZxz9vn0-LF8SVZvz6_Lh1XSyLIck1wpZ7IcJBRCGyeVya2qiyazpcAiA3BG6EJarfNGC62VBJeXClOEupYS0zm7OdzdvSaK1lVD9C3GqQJR7TNVUB0z7eztwVLjR9wX-B_-7uMfrAbj0l9TgXim</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spray deposition of nanostructured metal films using hydrodynamically stabilized, high pressure microplasmas</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Koh, Travis L. ; Gordon, Michael J.</creator><creatorcontrib>Koh, Travis L. ; Gordon, Michael J.</creatorcontrib><description>Cu, Pd, and Ni nanoparticles and films compose of fibers, matchsticks, and dense columns were grown using a hydrodynamically stabilized, high pressure (∼Torr) microplasma jet source at low substrate temperatures. Organometallic precursors were dissociated in the microplasma jet under highly reducing conditions, creating a directed flux of active metal species for the subsequent growth of nanostructured films. The growth process can be tuned (e.g., from nanoparticles, to competitive columns, to dense films with nanoscale grain structure) by adjusting the precursor flux, plasma current, background gas atmosphere, and jet–substrate distance. Microplasma jet operation, dynamics of the growth process, and the resulting metallic films are discussed.</description><identifier>ISSN: 0734-2101</identifier><identifier>EISSN: 1520-8559</identifier><identifier>DOI: 10.1116/1.4825129</identifier><identifier>CODEN: JVTAD6</identifier><language>eng</language><ispartof>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films, 2013-11, Vol.31 (6)</ispartof><rights>American Vacuum Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-644fd56121807df24d6e4b8c5e90a8511fd0782e776c7077421f694a3a1bb22a3</citedby><cites>FETCH-LOGICAL-c299t-644fd56121807df24d6e4b8c5e90a8511fd0782e776c7077421f694a3a1bb22a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Koh, Travis L.</creatorcontrib><creatorcontrib>Gordon, Michael J.</creatorcontrib><title>Spray deposition of nanostructured metal films using hydrodynamically stabilized, high pressure microplasmas</title><title>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films</title><description>Cu, Pd, and Ni nanoparticles and films compose of fibers, matchsticks, and dense columns were grown using a hydrodynamically stabilized, high pressure (∼Torr) microplasma jet source at low substrate temperatures. Organometallic precursors were dissociated in the microplasma jet under highly reducing conditions, creating a directed flux of active metal species for the subsequent growth of nanostructured films. The growth process can be tuned (e.g., from nanoparticles, to competitive columns, to dense films with nanoscale grain structure) by adjusting the precursor flux, plasma current, background gas atmosphere, and jet–substrate distance. Microplasma jet operation, dynamics of the growth process, and the resulting metallic films are discussed.</description><issn>0734-2101</issn><issn>1520-8559</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LxDAQgOEgCq6rB_9BropdM2natEdZ_IIFD-q5TJtkN5J-kOkK9de7yy549zSXZ2bgZewaxAIA8ntYqEJmIMsTNoNMiqTIsvKUzYROVSJBwDm7IPoSQkgp8hkL70PEiRs79ORH33e8d7zDrqcxbptxG63hrR0xcOdDS3xLvlvzzWRib6YOW99gCBOnEWsf_I81d3zj1xs-REu02-Y7EfshILVIl-zMYSB7dZxz9vn0-LF8SVZvz6_Lh1XSyLIck1wpZ7IcJBRCGyeVya2qiyazpcAiA3BG6EJarfNGC62VBJeXClOEupYS0zm7OdzdvSaK1lVD9C3GqQJR7TNVUB0z7eztwVLjR9wX-B_-7uMfrAbj0l9TgXim</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Koh, Travis L.</creator><creator>Gordon, Michael J.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201311</creationdate><title>Spray deposition of nanostructured metal films using hydrodynamically stabilized, high pressure microplasmas</title><author>Koh, Travis L. ; Gordon, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-644fd56121807df24d6e4b8c5e90a8511fd0782e776c7077421f694a3a1bb22a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koh, Travis L.</creatorcontrib><creatorcontrib>Gordon, Michael J.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koh, Travis L.</au><au>Gordon, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spray deposition of nanostructured metal films using hydrodynamically stabilized, high pressure microplasmas</atitle><jtitle>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films</jtitle><date>2013-11</date><risdate>2013</risdate><volume>31</volume><issue>6</issue><issn>0734-2101</issn><eissn>1520-8559</eissn><coden>JVTAD6</coden><abstract>Cu, Pd, and Ni nanoparticles and films compose of fibers, matchsticks, and dense columns were grown using a hydrodynamically stabilized, high pressure (∼Torr) microplasma jet source at low substrate temperatures. Organometallic precursors were dissociated in the microplasma jet under highly reducing conditions, creating a directed flux of active metal species for the subsequent growth of nanostructured films. The growth process can be tuned (e.g., from nanoparticles, to competitive columns, to dense films with nanoscale grain structure) by adjusting the precursor flux, plasma current, background gas atmosphere, and jet–substrate distance. Microplasma jet operation, dynamics of the growth process, and the resulting metallic films are discussed.</abstract><doi>10.1116/1.4825129</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0734-2101
ispartof Journal of vacuum science & technology. A, Vacuum, surfaces, and films, 2013-11, Vol.31 (6)
issn 0734-2101
1520-8559
language eng
recordid cdi_scitation_primary_10_1116_1_4825129
source AIP Journals Complete; Alma/SFX Local Collection
title Spray deposition of nanostructured metal films using hydrodynamically stabilized, high pressure microplasmas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A15%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spray%20deposition%20of%20nanostructured%20metal%20films%20using%20hydrodynamically%20stabilized,%20high%20pressure%20microplasmas&rft.jtitle=Journal%20of%20vacuum%20science%20&%20technology.%20A,%20Vacuum,%20surfaces,%20and%20films&rft.au=Koh,%20Travis%20L.&rft.date=2013-11&rft.volume=31&rft.issue=6&rft.issn=0734-2101&rft.eissn=1520-8559&rft.coden=JVTAD6&rft_id=info:doi/10.1116/1.4825129&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1116_1_4825129%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true