Electrical conductivity and photoresistance of atomic layer deposited Al-doped ZnO films

Al-doped ZnO films were deposited by the atomic layer deposition (ALD) on both glass and sapphire (0001) substrates. The Al composition of the films was varied by controlling the Zn:Al pulse cycle ratios. The films were characterized by the atomic force microscopy, x-ray photoelectron spectroscopy,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vacuum science & technology. A, Vacuum, surfaces, and films Vacuum, surfaces, and films, 2013-01, Vol.31 (1)
Hauptverfasser: Mundle, Rajeh M., Terry, Hampton S., Santiago, Kevin, Shaw, Dante, Bahoura, Messaoud, Pradhan, Aswini K., Dasari, Kiran, Palai, Ratnakar
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Journal of vacuum science & technology. A, Vacuum, surfaces, and films
container_volume 31
creator Mundle, Rajeh M.
Terry, Hampton S.
Santiago, Kevin
Shaw, Dante
Bahoura, Messaoud
Pradhan, Aswini K.
Dasari, Kiran
Palai, Ratnakar
description Al-doped ZnO films were deposited by the atomic layer deposition (ALD) on both glass and sapphire (0001) substrates. The Al composition of the films was varied by controlling the Zn:Al pulse cycle ratios. The films were characterized by the atomic force microscopy, x-ray photoelectron spectroscopy, x-ray diffraction, and optical measurements. The Film resistivity was measured as a function of Zn:Al cycle ratios as well as temperature for films grown at various substrate temperature used for ALD deposition. The resistivity of the ALD grown films decreases significantly, and so as the increase in the carrier concentration as the cycle ratio increases. The systematic measurements of temperature dependence of resistivity of films at various cycle ratios clearly demonstrate the crossover of the metal–semiconductor–insulator phase with the function of temperature as well as the cycle ratios. The average transmission of all films is greater than 85% and the optical absorption increases significantly in the visible region as the cycle ratio increases. The authors observed a remarkable dependence of photoresistance on electrical conductivity for ALD-grown films with varying cycle ratios, which control the Al content in the film. Our results suggest that Al3+ ions are incorporated as substitutional or interstitial sites of the ZnO matrix. However, an addition of an excessive amount of Al content causes the formation of Al2O3 and related clusters as carrier traps opposed to electron donors, resulting in an increase in the resistivity and other associated phenomena.
doi_str_mv 10.1116/1.4772665
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1116_1_4772665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1116_1_4772665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-852929dcf0e2e297d647a9be98e8c203bbd75a78e26f403cae1fbc48b5ef83c93</originalsourceid><addsrcrecordid>eNp90M1KAzEUBeAgCtbqwjfIVmFqkplkJstS6g8UulEQN0Pm5gYj08mQxELf3kqLLgRX9y4-DodDyDVnM865uuOzqq6FUvKETLgUrGik1KdkwuqyKgRn_JxcpPTBGBOCqQl5XfYIOXowPYUw2E_IfuvzjprB0vE95BAx-ZTNAEiDoyaHjQfamx1GanEMyWe0dN4XNoz7521YU-f7TbokZ870Ca-Od0pe7pfPi8ditX54WsxXBZRK5n09oYW24BgKFLq2qqqN7lA32IBgZdfZWpq6QaFcxUowyF0HVdNJdE0JupySm0MuxJBSRNeO0W9M3LWctd-TtLw9TrK3twebwGeTfRh-8DbEX9iO1v2H_yZ_AU-JcTY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electrical conductivity and photoresistance of atomic layer deposited Al-doped ZnO films</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Mundle, Rajeh M. ; Terry, Hampton S. ; Santiago, Kevin ; Shaw, Dante ; Bahoura, Messaoud ; Pradhan, Aswini K. ; Dasari, Kiran ; Palai, Ratnakar</creator><creatorcontrib>Mundle, Rajeh M. ; Terry, Hampton S. ; Santiago, Kevin ; Shaw, Dante ; Bahoura, Messaoud ; Pradhan, Aswini K. ; Dasari, Kiran ; Palai, Ratnakar</creatorcontrib><description>Al-doped ZnO films were deposited by the atomic layer deposition (ALD) on both glass and sapphire (0001) substrates. The Al composition of the films was varied by controlling the Zn:Al pulse cycle ratios. The films were characterized by the atomic force microscopy, x-ray photoelectron spectroscopy, x-ray diffraction, and optical measurements. The Film resistivity was measured as a function of Zn:Al cycle ratios as well as temperature for films grown at various substrate temperature used for ALD deposition. The resistivity of the ALD grown films decreases significantly, and so as the increase in the carrier concentration as the cycle ratio increases. The systematic measurements of temperature dependence of resistivity of films at various cycle ratios clearly demonstrate the crossover of the metal–semiconductor–insulator phase with the function of temperature as well as the cycle ratios. The average transmission of all films is greater than 85% and the optical absorption increases significantly in the visible region as the cycle ratio increases. The authors observed a remarkable dependence of photoresistance on electrical conductivity for ALD-grown films with varying cycle ratios, which control the Al content in the film. Our results suggest that Al3+ ions are incorporated as substitutional or interstitial sites of the ZnO matrix. However, an addition of an excessive amount of Al content causes the formation of Al2O3 and related clusters as carrier traps opposed to electron donors, resulting in an increase in the resistivity and other associated phenomena.</description><identifier>ISSN: 0734-2101</identifier><identifier>EISSN: 1520-8559</identifier><identifier>DOI: 10.1116/1.4772665</identifier><identifier>CODEN: JVTAD6</identifier><language>eng</language><ispartof>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films, 2013-01, Vol.31 (1)</ispartof><rights>American Vacuum Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-852929dcf0e2e297d647a9be98e8c203bbd75a78e26f403cae1fbc48b5ef83c93</citedby><cites>FETCH-LOGICAL-c365t-852929dcf0e2e297d647a9be98e8c203bbd75a78e26f403cae1fbc48b5ef83c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,795,4513,27929,27930</link.rule.ids></links><search><creatorcontrib>Mundle, Rajeh M.</creatorcontrib><creatorcontrib>Terry, Hampton S.</creatorcontrib><creatorcontrib>Santiago, Kevin</creatorcontrib><creatorcontrib>Shaw, Dante</creatorcontrib><creatorcontrib>Bahoura, Messaoud</creatorcontrib><creatorcontrib>Pradhan, Aswini K.</creatorcontrib><creatorcontrib>Dasari, Kiran</creatorcontrib><creatorcontrib>Palai, Ratnakar</creatorcontrib><title>Electrical conductivity and photoresistance of atomic layer deposited Al-doped ZnO films</title><title>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films</title><description>Al-doped ZnO films were deposited by the atomic layer deposition (ALD) on both glass and sapphire (0001) substrates. The Al composition of the films was varied by controlling the Zn:Al pulse cycle ratios. The films were characterized by the atomic force microscopy, x-ray photoelectron spectroscopy, x-ray diffraction, and optical measurements. The Film resistivity was measured as a function of Zn:Al cycle ratios as well as temperature for films grown at various substrate temperature used for ALD deposition. The resistivity of the ALD grown films decreases significantly, and so as the increase in the carrier concentration as the cycle ratio increases. The systematic measurements of temperature dependence of resistivity of films at various cycle ratios clearly demonstrate the crossover of the metal–semiconductor–insulator phase with the function of temperature as well as the cycle ratios. The average transmission of all films is greater than 85% and the optical absorption increases significantly in the visible region as the cycle ratio increases. The authors observed a remarkable dependence of photoresistance on electrical conductivity for ALD-grown films with varying cycle ratios, which control the Al content in the film. Our results suggest that Al3+ ions are incorporated as substitutional or interstitial sites of the ZnO matrix. However, an addition of an excessive amount of Al content causes the formation of Al2O3 and related clusters as carrier traps opposed to electron donors, resulting in an increase in the resistivity and other associated phenomena.</description><issn>0734-2101</issn><issn>1520-8559</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEUBeAgCtbqwjfIVmFqkplkJstS6g8UulEQN0Pm5gYj08mQxELf3kqLLgRX9y4-DodDyDVnM865uuOzqq6FUvKETLgUrGik1KdkwuqyKgRn_JxcpPTBGBOCqQl5XfYIOXowPYUw2E_IfuvzjprB0vE95BAx-ZTNAEiDoyaHjQfamx1GanEMyWe0dN4XNoz7521YU-f7TbokZ870Ca-Od0pe7pfPi8ditX54WsxXBZRK5n09oYW24BgKFLq2qqqN7lA32IBgZdfZWpq6QaFcxUowyF0HVdNJdE0JupySm0MuxJBSRNeO0W9M3LWctd-TtLw9TrK3twebwGeTfRh-8DbEX9iO1v2H_yZ_AU-JcTY</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Mundle, Rajeh M.</creator><creator>Terry, Hampton S.</creator><creator>Santiago, Kevin</creator><creator>Shaw, Dante</creator><creator>Bahoura, Messaoud</creator><creator>Pradhan, Aswini K.</creator><creator>Dasari, Kiran</creator><creator>Palai, Ratnakar</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130101</creationdate><title>Electrical conductivity and photoresistance of atomic layer deposited Al-doped ZnO films</title><author>Mundle, Rajeh M. ; Terry, Hampton S. ; Santiago, Kevin ; Shaw, Dante ; Bahoura, Messaoud ; Pradhan, Aswini K. ; Dasari, Kiran ; Palai, Ratnakar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-852929dcf0e2e297d647a9be98e8c203bbd75a78e26f403cae1fbc48b5ef83c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mundle, Rajeh M.</creatorcontrib><creatorcontrib>Terry, Hampton S.</creatorcontrib><creatorcontrib>Santiago, Kevin</creatorcontrib><creatorcontrib>Shaw, Dante</creatorcontrib><creatorcontrib>Bahoura, Messaoud</creatorcontrib><creatorcontrib>Pradhan, Aswini K.</creatorcontrib><creatorcontrib>Dasari, Kiran</creatorcontrib><creatorcontrib>Palai, Ratnakar</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mundle, Rajeh M.</au><au>Terry, Hampton S.</au><au>Santiago, Kevin</au><au>Shaw, Dante</au><au>Bahoura, Messaoud</au><au>Pradhan, Aswini K.</au><au>Dasari, Kiran</au><au>Palai, Ratnakar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical conductivity and photoresistance of atomic layer deposited Al-doped ZnO films</atitle><jtitle>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>31</volume><issue>1</issue><issn>0734-2101</issn><eissn>1520-8559</eissn><coden>JVTAD6</coden><abstract>Al-doped ZnO films were deposited by the atomic layer deposition (ALD) on both glass and sapphire (0001) substrates. The Al composition of the films was varied by controlling the Zn:Al pulse cycle ratios. The films were characterized by the atomic force microscopy, x-ray photoelectron spectroscopy, x-ray diffraction, and optical measurements. The Film resistivity was measured as a function of Zn:Al cycle ratios as well as temperature for films grown at various substrate temperature used for ALD deposition. The resistivity of the ALD grown films decreases significantly, and so as the increase in the carrier concentration as the cycle ratio increases. The systematic measurements of temperature dependence of resistivity of films at various cycle ratios clearly demonstrate the crossover of the metal–semiconductor–insulator phase with the function of temperature as well as the cycle ratios. The average transmission of all films is greater than 85% and the optical absorption increases significantly in the visible region as the cycle ratio increases. The authors observed a remarkable dependence of photoresistance on electrical conductivity for ALD-grown films with varying cycle ratios, which control the Al content in the film. Our results suggest that Al3+ ions are incorporated as substitutional or interstitial sites of the ZnO matrix. However, an addition of an excessive amount of Al content causes the formation of Al2O3 and related clusters as carrier traps opposed to electron donors, resulting in an increase in the resistivity and other associated phenomena.</abstract><doi>10.1116/1.4772665</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0734-2101
ispartof Journal of vacuum science & technology. A, Vacuum, surfaces, and films, 2013-01, Vol.31 (1)
issn 0734-2101
1520-8559
language eng
recordid cdi_scitation_primary_10_1116_1_4772665
source AIP Journals Complete; Alma/SFX Local Collection
title Electrical conductivity and photoresistance of atomic layer deposited Al-doped ZnO films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T17%3A27%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20conductivity%20and%20photoresistance%20of%20atomic%20layer%20deposited%20Al-doped%20ZnO%20films&rft.jtitle=Journal%20of%20vacuum%20science%20&%20technology.%20A,%20Vacuum,%20surfaces,%20and%20films&rft.au=Mundle,%20Rajeh%20M.&rft.date=2013-01-01&rft.volume=31&rft.issue=1&rft.issn=0734-2101&rft.eissn=1520-8559&rft.coden=JVTAD6&rft_id=info:doi/10.1116/1.4772665&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1116_1_4772665%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true