Growth and simulation of high-aspect ratio nanopillars by primary and secondary electron-induced deposition
While several studies have suggested that secondary electrons dominate electron beam induced deposition (EBID), we demonstrate that primary electrons (PE’s) contribute significantly to the deposition for nanoscale EBID over the electron beam energy range ( 500 – 20 keV ) . High-aspect ratio pillar g...
Gespeichert in:
Veröffentlicht in: | Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 2005-11, Vol.23 (6), p.2825-2832 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2832 |
---|---|
container_issue | 6 |
container_start_page | 2825 |
container_title | Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures |
container_volume | 23 |
creator | Fowlkes, J. D. Randolph, S. J. Rack, P. D. |
description | While several studies have suggested that secondary electrons dominate electron beam induced deposition (EBID), we demonstrate that primary electrons (PE’s) contribute significantly to the deposition for nanoscale EBID over the electron beam energy range
(
500
–
20
keV
)
. High-aspect ratio pillar growth is a signature of EBID; W nanopillar growth on
Si
O
2
substrate yielded a growth rate of
6
nm
s
−
1
and a nanopillar aspect ratio of
∼
50
. A simple integration of the primary, secondary, and backscattered electron distributions versus a dissociation cross section for
W
F
6
suggests that all three electron species should contribute to the total volume of the deposited nanopillar, contrary to reports that suggest that secondary electrons dominate the process. A three-dimensional, Monte Carlo simulation including time correlated gas dynamics and species specific deposition was developed to help elucidate which of the relevant electron species, primary (PE’s), secondary (SE’s), and/or backscattered electrons (BSE’s), induce the dissociation of precursor gas and lead to nanopillar growth. PE’s and secondary electrons produced from the incident beam (
SE
I
’s) were found to induce the vertical nanopillar growth component relative to secondary electrons induced from backscattered electrons (
SE
II
’s) and BSE’s. |
doi_str_mv | 10.1116/1.2101732 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1116_1_2101732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1116_1_2101732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-2155fc36d88362d896ebae0869deaeb9a270c2a1089cc6923ce7925801e84d7f3</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoWKcPfoO8KnTmJkuaPsrQKQx8UfCtZEnqol1Skk7Zt1_rij4IPt0__O7h3IPQJZApAIgbmFIgUDB6hDLglOSSi-IYZaRgs5wCvJ6is5TeCSGCM5ahj0UMX90aK29wcpttozoXPA41Xru3da5Sa3WH47DFXvnQuqZRMeHVDrfRbVTcHU6tDt4Mk236gxh87rzZamuwsW1IblA9Rye1apK9GOsEvdzfPc8f8uXT4nF-u8w1E7zrXXJe962RkglqZCnsSlkiRWmssqtS0YJoqoDIUmtRUqZtUVIuCVg5M0XNJujqoKtjSCnauhqtVkCqIaUKqjGlnr0-sEm77vv3H_gzxF-wak39H_xXeQ-HvHf_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Growth and simulation of high-aspect ratio nanopillars by primary and secondary electron-induced deposition</title><source>AIP Journals Complete</source><creator>Fowlkes, J. D. ; Randolph, S. J. ; Rack, P. D.</creator><creatorcontrib>Fowlkes, J. D. ; Randolph, S. J. ; Rack, P. D.</creatorcontrib><description>While several studies have suggested that secondary electrons dominate electron beam induced deposition (EBID), we demonstrate that primary electrons (PE’s) contribute significantly to the deposition for nanoscale EBID over the electron beam energy range
(
500
–
20
keV
)
. High-aspect ratio pillar growth is a signature of EBID; W nanopillar growth on
Si
O
2
substrate yielded a growth rate of
6
nm
s
−
1
and a nanopillar aspect ratio of
∼
50
. A simple integration of the primary, secondary, and backscattered electron distributions versus a dissociation cross section for
W
F
6
suggests that all three electron species should contribute to the total volume of the deposited nanopillar, contrary to reports that suggest that secondary electrons dominate the process. A three-dimensional, Monte Carlo simulation including time correlated gas dynamics and species specific deposition was developed to help elucidate which of the relevant electron species, primary (PE’s), secondary (SE’s), and/or backscattered electrons (BSE’s), induce the dissociation of precursor gas and lead to nanopillar growth. PE’s and secondary electrons produced from the incident beam (
SE
I
’s) were found to induce the vertical nanopillar growth component relative to secondary electrons induced from backscattered electrons (
SE
II
’s) and BSE’s.</description><identifier>ISSN: 0734-211X</identifier><identifier>ISSN: 1071-1023</identifier><identifier>EISSN: 1520-8567</identifier><identifier>DOI: 10.1116/1.2101732</identifier><identifier>CODEN: JVTBD9</identifier><language>eng</language><ispartof>Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2005-11, Vol.23 (6), p.2825-2832</ispartof><rights>American Vacuum Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-2155fc36d88362d896ebae0869deaeb9a270c2a1089cc6923ce7925801e84d7f3</citedby><cites>FETCH-LOGICAL-c365t-2155fc36d88362d896ebae0869deaeb9a270c2a1089cc6923ce7925801e84d7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Fowlkes, J. D.</creatorcontrib><creatorcontrib>Randolph, S. J.</creatorcontrib><creatorcontrib>Rack, P. D.</creatorcontrib><title>Growth and simulation of high-aspect ratio nanopillars by primary and secondary electron-induced deposition</title><title>Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures</title><description>While several studies have suggested that secondary electrons dominate electron beam induced deposition (EBID), we demonstrate that primary electrons (PE’s) contribute significantly to the deposition for nanoscale EBID over the electron beam energy range
(
500
–
20
keV
)
. High-aspect ratio pillar growth is a signature of EBID; W nanopillar growth on
Si
O
2
substrate yielded a growth rate of
6
nm
s
−
1
and a nanopillar aspect ratio of
∼
50
. A simple integration of the primary, secondary, and backscattered electron distributions versus a dissociation cross section for
W
F
6
suggests that all three electron species should contribute to the total volume of the deposited nanopillar, contrary to reports that suggest that secondary electrons dominate the process. A three-dimensional, Monte Carlo simulation including time correlated gas dynamics and species specific deposition was developed to help elucidate which of the relevant electron species, primary (PE’s), secondary (SE’s), and/or backscattered electrons (BSE’s), induce the dissociation of precursor gas and lead to nanopillar growth. PE’s and secondary electrons produced from the incident beam (
SE
I
’s) were found to induce the vertical nanopillar growth component relative to secondary electrons induced from backscattered electrons (
SE
II
’s) and BSE’s.</description><issn>0734-211X</issn><issn>1071-1023</issn><issn>1520-8567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYMoWKcPfoO8KnTmJkuaPsrQKQx8UfCtZEnqol1Skk7Zt1_rij4IPt0__O7h3IPQJZApAIgbmFIgUDB6hDLglOSSi-IYZaRgs5wCvJ6is5TeCSGCM5ahj0UMX90aK29wcpttozoXPA41Xru3da5Sa3WH47DFXvnQuqZRMeHVDrfRbVTcHU6tDt4Mk236gxh87rzZamuwsW1IblA9Rye1apK9GOsEvdzfPc8f8uXT4nF-u8w1E7zrXXJe962RkglqZCnsSlkiRWmssqtS0YJoqoDIUmtRUqZtUVIuCVg5M0XNJujqoKtjSCnauhqtVkCqIaUKqjGlnr0-sEm77vv3H_gzxF-wak39H_xXeQ-HvHf_</recordid><startdate>200511</startdate><enddate>200511</enddate><creator>Fowlkes, J. D.</creator><creator>Randolph, S. J.</creator><creator>Rack, P. D.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200511</creationdate><title>Growth and simulation of high-aspect ratio nanopillars by primary and secondary electron-induced deposition</title><author>Fowlkes, J. D. ; Randolph, S. J. ; Rack, P. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-2155fc36d88362d896ebae0869deaeb9a270c2a1089cc6923ce7925801e84d7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fowlkes, J. D.</creatorcontrib><creatorcontrib>Randolph, S. J.</creatorcontrib><creatorcontrib>Rack, P. D.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fowlkes, J. D.</au><au>Randolph, S. J.</au><au>Rack, P. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth and simulation of high-aspect ratio nanopillars by primary and secondary electron-induced deposition</atitle><jtitle>Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures</jtitle><date>2005-11</date><risdate>2005</risdate><volume>23</volume><issue>6</issue><spage>2825</spage><epage>2832</epage><pages>2825-2832</pages><issn>0734-211X</issn><issn>1071-1023</issn><eissn>1520-8567</eissn><coden>JVTBD9</coden><abstract>While several studies have suggested that secondary electrons dominate electron beam induced deposition (EBID), we demonstrate that primary electrons (PE’s) contribute significantly to the deposition for nanoscale EBID over the electron beam energy range
(
500
–
20
keV
)
. High-aspect ratio pillar growth is a signature of EBID; W nanopillar growth on
Si
O
2
substrate yielded a growth rate of
6
nm
s
−
1
and a nanopillar aspect ratio of
∼
50
. A simple integration of the primary, secondary, and backscattered electron distributions versus a dissociation cross section for
W
F
6
suggests that all three electron species should contribute to the total volume of the deposited nanopillar, contrary to reports that suggest that secondary electrons dominate the process. A three-dimensional, Monte Carlo simulation including time correlated gas dynamics and species specific deposition was developed to help elucidate which of the relevant electron species, primary (PE’s), secondary (SE’s), and/or backscattered electrons (BSE’s), induce the dissociation of precursor gas and lead to nanopillar growth. PE’s and secondary electrons produced from the incident beam (
SE
I
’s) were found to induce the vertical nanopillar growth component relative to secondary electrons induced from backscattered electrons (
SE
II
’s) and BSE’s.</abstract><doi>10.1116/1.2101732</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0734-211X |
ispartof | Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2005-11, Vol.23 (6), p.2825-2832 |
issn | 0734-211X 1071-1023 1520-8567 |
language | eng |
recordid | cdi_scitation_primary_10_1116_1_2101732 |
source | AIP Journals Complete |
title | Growth and simulation of high-aspect ratio nanopillars by primary and secondary electron-induced deposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A40%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20and%20simulation%20of%20high-aspect%20ratio%20nanopillars%20by%20primary%20and%20secondary%20electron-induced%20deposition&rft.jtitle=Journal%20of%20Vacuum%20Science%20&%20Technology%20B:%20Microelectronics%20and%20Nanometer%20Structures&rft.au=Fowlkes,%20J.%20D.&rft.date=2005-11&rft.volume=23&rft.issue=6&rft.spage=2825&rft.epage=2832&rft.pages=2825-2832&rft.issn=0734-211X&rft.eissn=1520-8567&rft.coden=JVTBD9&rft_id=info:doi/10.1116/1.2101732&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1116_1_2101732%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |