Hollow electrode enhanced radio frequency glow plasma and its application to the chemical vapor deposition of microcrystalline silicon

A hollow electrode enhanced radio frequency (rf) glow plasma excitation technique and its application to the chemical vapor deposition of microcrystalline silicon films have been studied. In this technique, the reactor has two types of hollow structure. One is a hollow counterelectrode, and the othe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vacuum science & technology. A, Vacuum, surfaces, and films Vacuum, surfaces, and films, 2004-09, Vol.22 (5), p.2139-2144
Hauptverfasser: Tabuchi, Toshihiro, Mizukami, Hiroyuki, Takashiri, Masayuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2144
container_issue 5
container_start_page 2139
container_title Journal of vacuum science & technology. A, Vacuum, surfaces, and films
container_volume 22
creator Tabuchi, Toshihiro
Mizukami, Hiroyuki
Takashiri, Masayuki
description A hollow electrode enhanced radio frequency (rf) glow plasma excitation technique and its application to the chemical vapor deposition of microcrystalline silicon films have been studied. In this technique, the reactor has two types of hollow structure. One is a hollow counterelectrode, and the other serves as both a hollow counterelectrode and a hollow rf electrode. The application of these discharge types to semiconductor processing is studied in the case of plasma enhanced chemical vapor deposition of hydrogenated microcrystalline silicon thin films. High crystallinity, photosensitivity and a maximum deposition rate of 6.0 nm ∕ s can all be achieved at plasma excitation frequency of 13.56 MHz and substrate temperature of 300 ° C . Properties of these plasmas are investigated by observing the plasma emission pattern, optical emission spectrum analysis and electrical parameters of the rf electrode. It is found that the plasma technique using both types of hollow discharge not only results in higher intensity of SiH * and H α but also in much smaller self-bias voltage of the rf electrode. Faster processing of device grade hydrogenated microcrystalline silicon films can also be achieved under lower rf power compared to use of the hollow counterelectrode technique alone.
doi_str_mv 10.1116/1.1774200
format Article
fullrecord <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_scitation_primary_10_1116_1_1774200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1116_1_1774200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-13897175981423eb410faf365b69d2c2a4aa9e86b7a3e2f2801c7dcf5b0724813</originalsourceid><addsrcrecordid>eNqdkE1LAzEQhoMoWKsH_0HAk8JqJvuR3aMUtULBi56XbHZiI-lmTWKlf8DfbfoB3j0FJs-8M_MQcgnsFgCqO7gFIQrO2BGZQMlZVpdlc0wmTORFxoHBKTkL4YMxxjmrJuRn7qx13xQtquhdjxSHpRwU9tTL3jiqPX5-4aA29H3LjVaGlaRy6KmJgcpxtEbJaNxAo6NxiVQtcZVKlq7l6DztcXTB7ACnafrxTvlNiNJaMyANJvW74ZycaGkDXhzeKXl7fHidzbPFy9Pz7H6RqbyBmEFeNwJE2dRQ8By7ApiWOq_Krmp6rrgspGywrjohc-Sa1wyU6JUuOyZ4UUM-JVf7XBeiaYMyEdUyzR_S9W0SkqJEnajrPZWWDcGjbkdvVtJvWmDtVnML7UFzYm_27DZsJ-J_8Nr5P7Ade53_Am7BjZM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hollow electrode enhanced radio frequency glow plasma and its application to the chemical vapor deposition of microcrystalline silicon</title><source>AIP Journals Complete</source><creator>Tabuchi, Toshihiro ; Mizukami, Hiroyuki ; Takashiri, Masayuki</creator><creatorcontrib>Tabuchi, Toshihiro ; Mizukami, Hiroyuki ; Takashiri, Masayuki</creatorcontrib><description>A hollow electrode enhanced radio frequency (rf) glow plasma excitation technique and its application to the chemical vapor deposition of microcrystalline silicon films have been studied. In this technique, the reactor has two types of hollow structure. One is a hollow counterelectrode, and the other serves as both a hollow counterelectrode and a hollow rf electrode. The application of these discharge types to semiconductor processing is studied in the case of plasma enhanced chemical vapor deposition of hydrogenated microcrystalline silicon thin films. High crystallinity, photosensitivity and a maximum deposition rate of 6.0 nm ∕ s can all be achieved at plasma excitation frequency of 13.56 MHz and substrate temperature of 300 ° C . Properties of these plasmas are investigated by observing the plasma emission pattern, optical emission spectrum analysis and electrical parameters of the rf electrode. It is found that the plasma technique using both types of hollow discharge not only results in higher intensity of SiH * and H α but also in much smaller self-bias voltage of the rf electrode. Faster processing of device grade hydrogenated microcrystalline silicon films can also be achieved under lower rf power compared to use of the hollow counterelectrode technique alone.</description><identifier>ISSN: 0734-2101</identifier><identifier>EISSN: 1520-8559</identifier><identifier>DOI: 10.1116/1.1774200</identifier><identifier>CODEN: JVTAD6</identifier><language>eng</language><publisher>United States</publisher><subject>CHEMICAL VAPOR DEPOSITION ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; ELECTRODES ; EMISSION SPECTRA ; EXCITATION ; GLOW DISCHARGES ; MATERIALS SCIENCE ; MHZ RANGE 01-100 ; MICROSTRUCTURE ; PHOTOSENSITIVITY ; PLASMA ; RADIOWAVE RADIATION ; SEMICONDUCTOR MATERIALS ; SILICON ; THIN FILMS</subject><ispartof>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films, 2004-09, Vol.22 (5), p.2139-2144</ispartof><rights>American Vacuum Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-13897175981423eb410faf365b69d2c2a4aa9e86b7a3e2f2801c7dcf5b0724813</citedby><cites>FETCH-LOGICAL-c391t-13897175981423eb410faf365b69d2c2a4aa9e86b7a3e2f2801c7dcf5b0724813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,790,881,4498,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/20636578$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tabuchi, Toshihiro</creatorcontrib><creatorcontrib>Mizukami, Hiroyuki</creatorcontrib><creatorcontrib>Takashiri, Masayuki</creatorcontrib><title>Hollow electrode enhanced radio frequency glow plasma and its application to the chemical vapor deposition of microcrystalline silicon</title><title>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films</title><description>A hollow electrode enhanced radio frequency (rf) glow plasma excitation technique and its application to the chemical vapor deposition of microcrystalline silicon films have been studied. In this technique, the reactor has two types of hollow structure. One is a hollow counterelectrode, and the other serves as both a hollow counterelectrode and a hollow rf electrode. The application of these discharge types to semiconductor processing is studied in the case of plasma enhanced chemical vapor deposition of hydrogenated microcrystalline silicon thin films. High crystallinity, photosensitivity and a maximum deposition rate of 6.0 nm ∕ s can all be achieved at plasma excitation frequency of 13.56 MHz and substrate temperature of 300 ° C . Properties of these plasmas are investigated by observing the plasma emission pattern, optical emission spectrum analysis and electrical parameters of the rf electrode. It is found that the plasma technique using both types of hollow discharge not only results in higher intensity of SiH * and H α but also in much smaller self-bias voltage of the rf electrode. Faster processing of device grade hydrogenated microcrystalline silicon films can also be achieved under lower rf power compared to use of the hollow counterelectrode technique alone.</description><subject>CHEMICAL VAPOR DEPOSITION</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>ELECTRODES</subject><subject>EMISSION SPECTRA</subject><subject>EXCITATION</subject><subject>GLOW DISCHARGES</subject><subject>MATERIALS SCIENCE</subject><subject>MHZ RANGE 01-100</subject><subject>MICROSTRUCTURE</subject><subject>PHOTOSENSITIVITY</subject><subject>PLASMA</subject><subject>RADIOWAVE RADIATION</subject><subject>SEMICONDUCTOR MATERIALS</subject><subject>SILICON</subject><subject>THIN FILMS</subject><issn>0734-2101</issn><issn>1520-8559</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LAzEQhoMoWKsH_0HAk8JqJvuR3aMUtULBi56XbHZiI-lmTWKlf8DfbfoB3j0FJs-8M_MQcgnsFgCqO7gFIQrO2BGZQMlZVpdlc0wmTORFxoHBKTkL4YMxxjmrJuRn7qx13xQtquhdjxSHpRwU9tTL3jiqPX5-4aA29H3LjVaGlaRy6KmJgcpxtEbJaNxAo6NxiVQtcZVKlq7l6DztcXTB7ACnafrxTvlNiNJaMyANJvW74ZycaGkDXhzeKXl7fHidzbPFy9Pz7H6RqbyBmEFeNwJE2dRQ8By7ApiWOq_Krmp6rrgspGywrjohc-Sa1wyU6JUuOyZ4UUM-JVf7XBeiaYMyEdUyzR_S9W0SkqJEnajrPZWWDcGjbkdvVtJvWmDtVnML7UFzYm_27DZsJ-J_8Nr5P7Ade53_Am7BjZM</recordid><startdate>200409</startdate><enddate>200409</enddate><creator>Tabuchi, Toshihiro</creator><creator>Mizukami, Hiroyuki</creator><creator>Takashiri, Masayuki</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>200409</creationdate><title>Hollow electrode enhanced radio frequency glow plasma and its application to the chemical vapor deposition of microcrystalline silicon</title><author>Tabuchi, Toshihiro ; Mizukami, Hiroyuki ; Takashiri, Masayuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-13897175981423eb410faf365b69d2c2a4aa9e86b7a3e2f2801c7dcf5b0724813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>CHEMICAL VAPOR DEPOSITION</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>ELECTRODES</topic><topic>EMISSION SPECTRA</topic><topic>EXCITATION</topic><topic>GLOW DISCHARGES</topic><topic>MATERIALS SCIENCE</topic><topic>MHZ RANGE 01-100</topic><topic>MICROSTRUCTURE</topic><topic>PHOTOSENSITIVITY</topic><topic>PLASMA</topic><topic>RADIOWAVE RADIATION</topic><topic>SEMICONDUCTOR MATERIALS</topic><topic>SILICON</topic><topic>THIN FILMS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tabuchi, Toshihiro</creatorcontrib><creatorcontrib>Mizukami, Hiroyuki</creatorcontrib><creatorcontrib>Takashiri, Masayuki</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tabuchi, Toshihiro</au><au>Mizukami, Hiroyuki</au><au>Takashiri, Masayuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hollow electrode enhanced radio frequency glow plasma and its application to the chemical vapor deposition of microcrystalline silicon</atitle><jtitle>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films</jtitle><date>2004-09</date><risdate>2004</risdate><volume>22</volume><issue>5</issue><spage>2139</spage><epage>2144</epage><pages>2139-2144</pages><issn>0734-2101</issn><eissn>1520-8559</eissn><coden>JVTAD6</coden><abstract>A hollow electrode enhanced radio frequency (rf) glow plasma excitation technique and its application to the chemical vapor deposition of microcrystalline silicon films have been studied. In this technique, the reactor has two types of hollow structure. One is a hollow counterelectrode, and the other serves as both a hollow counterelectrode and a hollow rf electrode. The application of these discharge types to semiconductor processing is studied in the case of plasma enhanced chemical vapor deposition of hydrogenated microcrystalline silicon thin films. High crystallinity, photosensitivity and a maximum deposition rate of 6.0 nm ∕ s can all be achieved at plasma excitation frequency of 13.56 MHz and substrate temperature of 300 ° C . Properties of these plasmas are investigated by observing the plasma emission pattern, optical emission spectrum analysis and electrical parameters of the rf electrode. It is found that the plasma technique using both types of hollow discharge not only results in higher intensity of SiH * and H α but also in much smaller self-bias voltage of the rf electrode. Faster processing of device grade hydrogenated microcrystalline silicon films can also be achieved under lower rf power compared to use of the hollow counterelectrode technique alone.</abstract><cop>United States</cop><doi>10.1116/1.1774200</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0734-2101
ispartof Journal of vacuum science & technology. A, Vacuum, surfaces, and films, 2004-09, Vol.22 (5), p.2139-2144
issn 0734-2101
1520-8559
language eng
recordid cdi_scitation_primary_10_1116_1_1774200
source AIP Journals Complete
subjects CHEMICAL VAPOR DEPOSITION
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
ELECTRODES
EMISSION SPECTRA
EXCITATION
GLOW DISCHARGES
MATERIALS SCIENCE
MHZ RANGE 01-100
MICROSTRUCTURE
PHOTOSENSITIVITY
PLASMA
RADIOWAVE RADIATION
SEMICONDUCTOR MATERIALS
SILICON
THIN FILMS
title Hollow electrode enhanced radio frequency glow plasma and its application to the chemical vapor deposition of microcrystalline silicon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A43%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hollow%20electrode%20enhanced%20radio%20frequency%20glow%20plasma%20and%20its%20application%20to%20the%20chemical%20vapor%20deposition%20of%20microcrystalline%20silicon&rft.jtitle=Journal%20of%20vacuum%20science%20&%20technology.%20A,%20Vacuum,%20surfaces,%20and%20films&rft.au=Tabuchi,%20Toshihiro&rft.date=2004-09&rft.volume=22&rft.issue=5&rft.spage=2139&rft.epage=2144&rft.pages=2139-2144&rft.issn=0734-2101&rft.eissn=1520-8559&rft.coden=JVTAD6&rft_id=info:doi/10.1116/1.1774200&rft_dat=%3Cscitation_osti_%3Escitation_primary_10_1116_1_1774200%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true