Microscopic dynamics of enhanced glass-forming ability with minor oxygen addition in bulk metallic glasses

Minor oxygen addition has been proposed as a promising strategy to enhance the performance of metallic glasses, particularly their glass-forming ability. In this work, we investigate the microscopic dynamics of a CuZr glass former with oxygen content up to 2 at. % using molecular dynamics simulation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2025-02, Vol.162 (5)
Hauptverfasser: Yang, Kun, Qin, Hairong, Huang, Haishen, Zhu, Yong, Lü, Yongjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title The Journal of chemical physics
container_volume 162
creator Yang, Kun
Qin, Hairong
Huang, Haishen
Zhu, Yong
Lü, Yongjun
description Minor oxygen addition has been proposed as a promising strategy to enhance the performance of metallic glasses, particularly their glass-forming ability. In this work, we investigate the microscopic dynamics of a CuZr glass former with oxygen content up to 2 at. % using molecular dynamics simulations based on specially developed neural network interatomic potentials. Our findings indicate a gradual increase in the glass transition temperature with oxygen addition, with an anomalous peak at 0.4 at. % O. We reveal an anti-correlation of kinetic fragility and dynamic heterogeneity behind this unusual rise, where the system exhibits reduced kinetic fragility alongside more significant dynamic heterogeneity. Using the continuous time random walk method, we show that at 0.4 at. % O, a highly mobile Cu atomic layer forms around O–Zr clusters, resulting in notable dynamic heterogeneity. This dynamic behavior is closely linked to the bonding pattern within the O–Zr network, particularly favoring the configuration with edge and surface sharing. In addition, such structures contribute to a more compact O–Zr network, leading to lower kinetic fragility. These findings provide detailed insights into the microscopic dynamics behind the effects of minor oxygen additions.
doi_str_mv 10.1063/5.0246669
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0246669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3163024579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1539-c8dab7ab6c36e6b90a7922aa9a57ad3ff90408ce6605bb3f33ac05fe41357dd03</originalsourceid><addsrcrecordid>eNp9kU1LxDAQQIMouq4e_AMS8KJC10mzSZujiF-geNFzmSbpmrVN1qZF99_bdVcPHjwNDI_H8IaQIwYTBpJfiAmkUyml2iIjBrlKMqlgm4wAUpYoCXKP7Mc4BwCWpdNdssdVrnKR8RGZPzrdhqjDwmlqlh4bpyMNFbX-Fb22hs5qjDGpQts4P6NYutp1S_rhulc6bEJLw-dyZj1FY1zngqfO07Kv32hjO6zrQfttsPGA7FRYR3u4mWPycnP9fHWXPDzd3l9dPiSaCa4SnRssMyyl5tLKUgFmKk0RFYoMDa8qBVPItZUSRFnyinPUICo7ZVxkxgAfk9O1d9GG997Grmhc1Lau0dvQx4IzmeaCpzId0JM_6Dz0rR-uW1F8qCoyNVBna2pVKra2Khata7BdFgyK1QMKUWweMLDHG2NfNtb8kj_FB-B8DUTtOlwF-8f2BcHMjkY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3163024579</pqid></control><display><type>article</type><title>Microscopic dynamics of enhanced glass-forming ability with minor oxygen addition in bulk metallic glasses</title><source>AIP Journals Complete</source><creator>Yang, Kun ; Qin, Hairong ; Huang, Haishen ; Zhu, Yong ; Lü, Yongjun</creator><creatorcontrib>Yang, Kun ; Qin, Hairong ; Huang, Haishen ; Zhu, Yong ; Lü, Yongjun</creatorcontrib><description>Minor oxygen addition has been proposed as a promising strategy to enhance the performance of metallic glasses, particularly their glass-forming ability. In this work, we investigate the microscopic dynamics of a CuZr glass former with oxygen content up to 2 at. % using molecular dynamics simulations based on specially developed neural network interatomic potentials. Our findings indicate a gradual increase in the glass transition temperature with oxygen addition, with an anomalous peak at 0.4 at. % O. We reveal an anti-correlation of kinetic fragility and dynamic heterogeneity behind this unusual rise, where the system exhibits reduced kinetic fragility alongside more significant dynamic heterogeneity. Using the continuous time random walk method, we show that at 0.4 at. % O, a highly mobile Cu atomic layer forms around O–Zr clusters, resulting in notable dynamic heterogeneity. This dynamic behavior is closely linked to the bonding pattern within the O–Zr network, particularly favoring the configuration with edge and surface sharing. In addition, such structures contribute to a more compact O–Zr network, leading to lower kinetic fragility. These findings provide detailed insights into the microscopic dynamics behind the effects of minor oxygen additions.</description><identifier>ISSN: 0021-9606</identifier><identifier>ISSN: 1089-7690</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0246669</identifier><identifier>PMID: 39898573</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Amorphous materials ; Chemical bonds ; Continuous time systems ; Fragility ; Glass formation ; Glass transition temperature ; Heterogeneity ; Metallic glasses ; Molecular dynamics ; Neural networks ; Oxygen ; Oxygen content ; Random walk ; Zirconium</subject><ispartof>The Journal of chemical physics, 2025-02, Vol.162 (5)</ispartof><rights>Author(s)</rights><rights>2025 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1539-c8dab7ab6c36e6b90a7922aa9a57ad3ff90408ce6605bb3f33ac05fe41357dd03</cites><orcidid>0000-0002-1000-0894</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0246669$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39898573$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Kun</creatorcontrib><creatorcontrib>Qin, Hairong</creatorcontrib><creatorcontrib>Huang, Haishen</creatorcontrib><creatorcontrib>Zhu, Yong</creatorcontrib><creatorcontrib>Lü, Yongjun</creatorcontrib><title>Microscopic dynamics of enhanced glass-forming ability with minor oxygen addition in bulk metallic glasses</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Minor oxygen addition has been proposed as a promising strategy to enhance the performance of metallic glasses, particularly their glass-forming ability. In this work, we investigate the microscopic dynamics of a CuZr glass former with oxygen content up to 2 at. % using molecular dynamics simulations based on specially developed neural network interatomic potentials. Our findings indicate a gradual increase in the glass transition temperature with oxygen addition, with an anomalous peak at 0.4 at. % O. We reveal an anti-correlation of kinetic fragility and dynamic heterogeneity behind this unusual rise, where the system exhibits reduced kinetic fragility alongside more significant dynamic heterogeneity. Using the continuous time random walk method, we show that at 0.4 at. % O, a highly mobile Cu atomic layer forms around O–Zr clusters, resulting in notable dynamic heterogeneity. This dynamic behavior is closely linked to the bonding pattern within the O–Zr network, particularly favoring the configuration with edge and surface sharing. In addition, such structures contribute to a more compact O–Zr network, leading to lower kinetic fragility. These findings provide detailed insights into the microscopic dynamics behind the effects of minor oxygen additions.</description><subject>Amorphous materials</subject><subject>Chemical bonds</subject><subject>Continuous time systems</subject><subject>Fragility</subject><subject>Glass formation</subject><subject>Glass transition temperature</subject><subject>Heterogeneity</subject><subject>Metallic glasses</subject><subject>Molecular dynamics</subject><subject>Neural networks</subject><subject>Oxygen</subject><subject>Oxygen content</subject><subject>Random walk</subject><subject>Zirconium</subject><issn>0021-9606</issn><issn>1089-7690</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LxDAQQIMouq4e_AMS8KJC10mzSZujiF-geNFzmSbpmrVN1qZF99_bdVcPHjwNDI_H8IaQIwYTBpJfiAmkUyml2iIjBrlKMqlgm4wAUpYoCXKP7Mc4BwCWpdNdssdVrnKR8RGZPzrdhqjDwmlqlh4bpyMNFbX-Fb22hs5qjDGpQts4P6NYutp1S_rhulc6bEJLw-dyZj1FY1zngqfO07Kv32hjO6zrQfttsPGA7FRYR3u4mWPycnP9fHWXPDzd3l9dPiSaCa4SnRssMyyl5tLKUgFmKk0RFYoMDa8qBVPItZUSRFnyinPUICo7ZVxkxgAfk9O1d9GG997Grmhc1Lau0dvQx4IzmeaCpzId0JM_6Dz0rR-uW1F8qCoyNVBna2pVKra2Khata7BdFgyK1QMKUWweMLDHG2NfNtb8kj_FB-B8DUTtOlwF-8f2BcHMjkY</recordid><startdate>20250207</startdate><enddate>20250207</enddate><creator>Yang, Kun</creator><creator>Qin, Hairong</creator><creator>Huang, Haishen</creator><creator>Zhu, Yong</creator><creator>Lü, Yongjun</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1000-0894</orcidid></search><sort><creationdate>20250207</creationdate><title>Microscopic dynamics of enhanced glass-forming ability with minor oxygen addition in bulk metallic glasses</title><author>Yang, Kun ; Qin, Hairong ; Huang, Haishen ; Zhu, Yong ; Lü, Yongjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1539-c8dab7ab6c36e6b90a7922aa9a57ad3ff90408ce6605bb3f33ac05fe41357dd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Amorphous materials</topic><topic>Chemical bonds</topic><topic>Continuous time systems</topic><topic>Fragility</topic><topic>Glass formation</topic><topic>Glass transition temperature</topic><topic>Heterogeneity</topic><topic>Metallic glasses</topic><topic>Molecular dynamics</topic><topic>Neural networks</topic><topic>Oxygen</topic><topic>Oxygen content</topic><topic>Random walk</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Kun</creatorcontrib><creatorcontrib>Qin, Hairong</creatorcontrib><creatorcontrib>Huang, Haishen</creatorcontrib><creatorcontrib>Zhu, Yong</creatorcontrib><creatorcontrib>Lü, Yongjun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Kun</au><au>Qin, Hairong</au><au>Huang, Haishen</au><au>Zhu, Yong</au><au>Lü, Yongjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microscopic dynamics of enhanced glass-forming ability with minor oxygen addition in bulk metallic glasses</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2025-02-07</date><risdate>2025</risdate><volume>162</volume><issue>5</issue><issn>0021-9606</issn><issn>1089-7690</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Minor oxygen addition has been proposed as a promising strategy to enhance the performance of metallic glasses, particularly their glass-forming ability. In this work, we investigate the microscopic dynamics of a CuZr glass former with oxygen content up to 2 at. % using molecular dynamics simulations based on specially developed neural network interatomic potentials. Our findings indicate a gradual increase in the glass transition temperature with oxygen addition, with an anomalous peak at 0.4 at. % O. We reveal an anti-correlation of kinetic fragility and dynamic heterogeneity behind this unusual rise, where the system exhibits reduced kinetic fragility alongside more significant dynamic heterogeneity. Using the continuous time random walk method, we show that at 0.4 at. % O, a highly mobile Cu atomic layer forms around O–Zr clusters, resulting in notable dynamic heterogeneity. This dynamic behavior is closely linked to the bonding pattern within the O–Zr network, particularly favoring the configuration with edge and surface sharing. In addition, such structures contribute to a more compact O–Zr network, leading to lower kinetic fragility. These findings provide detailed insights into the microscopic dynamics behind the effects of minor oxygen additions.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>39898573</pmid><doi>10.1063/5.0246669</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1000-0894</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2025-02, Vol.162 (5)
issn 0021-9606
1089-7690
1089-7690
language eng
recordid cdi_scitation_primary_10_1063_5_0246669
source AIP Journals Complete
subjects Amorphous materials
Chemical bonds
Continuous time systems
Fragility
Glass formation
Glass transition temperature
Heterogeneity
Metallic glasses
Molecular dynamics
Neural networks
Oxygen
Oxygen content
Random walk
Zirconium
title Microscopic dynamics of enhanced glass-forming ability with minor oxygen addition in bulk metallic glasses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A06%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microscopic%20dynamics%20of%20enhanced%20glass-forming%20ability%20with%20minor%20oxygen%20addition%20in%20bulk%20metallic%20glasses&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Yang,%20Kun&rft.date=2025-02-07&rft.volume=162&rft.issue=5&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0246669&rft_dat=%3Cproquest_scita%3E3163024579%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3163024579&rft_id=info:pmid/39898573&rfr_iscdi=true