Evolving AI in agriculture value chain

Digital agricultural technologies (DA) have the potential to improve agriculture’s complex operational inefficiencies, which are a major drag on the Indian economy. We examine and put together the research that is currently accessible on digital agriculture in India and project its revolutionary pot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Doifode, Adesh, Bhosale, Trupti, Singh, Ardhendu Shekhar, Pillai, Deepa
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3188
creator Doifode, Adesh
Bhosale, Trupti
Singh, Ardhendu Shekhar
Pillai, Deepa
description Digital agricultural technologies (DA) have the potential to improve agriculture’s complex operational inefficiencies, which are a major drag on the Indian economy. We examine and put together the research that is currently accessible on digital agriculture in India and project its revolutionary potential over the next ten years. A continuous transition from individual farms to the entire value chain is taking place thanks to agritech’s ability to enable innovation at numerous points along value chains. Information and communication technology-based solutions are giving way to the Internet of Things and services that are enabled by artificial intelligence and machine learning in this industry. India’s governmental policy reveals evidence of extensive collaboration and investment in the field, with a clear emphasis on the growth of data infrastructure. We identify the main determinants of DA’s success in India as being smallholder dominance, diversity in production systems, the dominance of commodity crops, proximity to metropolitan markets, and state policy. A digital transformation of Indian agriculture is strongly suggested by the review of the technologies already available and their implementations by the public sector, tech giants, information technology leaders, and agri-food tech entrepreneurs in India.
doi_str_mv 10.1063/5.0245204
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0245204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142698013</sourcerecordid><originalsourceid>FETCH-LOGICAL-p634-3bc47e9cd02d872643f3a60511cc58004751a526ce23fa8d2e14ad1bdece65ff3</originalsourceid><addsrcrecordid>eNotkEtLw0AURgdRMFYX_oOA4EJIvXfuPJJlKa0WCm66cDdMJ5M6JSZx8gD_vZV29W0O34HD2CPCHEHRq5wDF5KDuGIJSomZVqiuWQJQiIwL-rxld31_BOCF1nnCnldTW0-hOaSLTRqa1B5icGM9jNGnk61Hn7ovG5p7dlPZuvcPl52x3Xq1W75n24-3zXKxzTpFIqO9E9oXrgRe5porQRVZBRLROZkDCC3RSq6c51TZvOQehS1xX3rnlawqmrGn820X25_R94M5tmNsTkZDKLgqckA6US9nqndhsENoG9PF8G3jr0Ew_xmMNJcM9Afg60zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3142698013</pqid></control><display><type>conference_proceeding</type><title>Evolving AI in agriculture value chain</title><source>American Institute of Physics (AIP) Journals</source><creator>Doifode, Adesh ; Bhosale, Trupti ; Singh, Ardhendu Shekhar ; Pillai, Deepa</creator><contributor>Gawande, Snehal P. ; Rajguru, Vijaya S. ; Adhau, Sarala P.</contributor><creatorcontrib>Doifode, Adesh ; Bhosale, Trupti ; Singh, Ardhendu Shekhar ; Pillai, Deepa ; Gawande, Snehal P. ; Rajguru, Vijaya S. ; Adhau, Sarala P.</creatorcontrib><description>Digital agricultural technologies (DA) have the potential to improve agriculture’s complex operational inefficiencies, which are a major drag on the Indian economy. We examine and put together the research that is currently accessible on digital agriculture in India and project its revolutionary potential over the next ten years. A continuous transition from individual farms to the entire value chain is taking place thanks to agritech’s ability to enable innovation at numerous points along value chains. Information and communication technology-based solutions are giving way to the Internet of Things and services that are enabled by artificial intelligence and machine learning in this industry. India’s governmental policy reveals evidence of extensive collaboration and investment in the field, with a clear emphasis on the growth of data infrastructure. We identify the main determinants of DA’s success in India as being smallholder dominance, diversity in production systems, the dominance of commodity crops, proximity to metropolitan markets, and state policy. A digital transformation of Indian agriculture is strongly suggested by the review of the technologies already available and their implementations by the public sector, tech giants, information technology leaders, and agri-food tech entrepreneurs in India.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0245204</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Agriculture ; Artificial intelligence ; Crop production ; Internet of Things ; Machine learning ; Value chain ; Value engineering</subject><ispartof>AIP conference proceedings, 2024, Vol.3188 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0245204$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4509,23928,23929,25138,27922,27923,76154</link.rule.ids></links><search><contributor>Gawande, Snehal P.</contributor><contributor>Rajguru, Vijaya S.</contributor><contributor>Adhau, Sarala P.</contributor><creatorcontrib>Doifode, Adesh</creatorcontrib><creatorcontrib>Bhosale, Trupti</creatorcontrib><creatorcontrib>Singh, Ardhendu Shekhar</creatorcontrib><creatorcontrib>Pillai, Deepa</creatorcontrib><title>Evolving AI in agriculture value chain</title><title>AIP conference proceedings</title><description>Digital agricultural technologies (DA) have the potential to improve agriculture’s complex operational inefficiencies, which are a major drag on the Indian economy. We examine and put together the research that is currently accessible on digital agriculture in India and project its revolutionary potential over the next ten years. A continuous transition from individual farms to the entire value chain is taking place thanks to agritech’s ability to enable innovation at numerous points along value chains. Information and communication technology-based solutions are giving way to the Internet of Things and services that are enabled by artificial intelligence and machine learning in this industry. India’s governmental policy reveals evidence of extensive collaboration and investment in the field, with a clear emphasis on the growth of data infrastructure. We identify the main determinants of DA’s success in India as being smallholder dominance, diversity in production systems, the dominance of commodity crops, proximity to metropolitan markets, and state policy. A digital transformation of Indian agriculture is strongly suggested by the review of the technologies already available and their implementations by the public sector, tech giants, information technology leaders, and agri-food tech entrepreneurs in India.</description><subject>Agriculture</subject><subject>Artificial intelligence</subject><subject>Crop production</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Value chain</subject><subject>Value engineering</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEtLw0AURgdRMFYX_oOA4EJIvXfuPJJlKa0WCm66cDdMJ5M6JSZx8gD_vZV29W0O34HD2CPCHEHRq5wDF5KDuGIJSomZVqiuWQJQiIwL-rxld31_BOCF1nnCnldTW0-hOaSLTRqa1B5icGM9jNGnk61Hn7ovG5p7dlPZuvcPl52x3Xq1W75n24-3zXKxzTpFIqO9E9oXrgRe5porQRVZBRLROZkDCC3RSq6c51TZvOQehS1xX3rnlawqmrGn820X25_R94M5tmNsTkZDKLgqckA6US9nqndhsENoG9PF8G3jr0Ew_xmMNJcM9Afg60zw</recordid><startdate>20241210</startdate><enddate>20241210</enddate><creator>Doifode, Adesh</creator><creator>Bhosale, Trupti</creator><creator>Singh, Ardhendu Shekhar</creator><creator>Pillai, Deepa</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20241210</creationdate><title>Evolving AI in agriculture value chain</title><author>Doifode, Adesh ; Bhosale, Trupti ; Singh, Ardhendu Shekhar ; Pillai, Deepa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p634-3bc47e9cd02d872643f3a60511cc58004751a526ce23fa8d2e14ad1bdece65ff3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agriculture</topic><topic>Artificial intelligence</topic><topic>Crop production</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Value chain</topic><topic>Value engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doifode, Adesh</creatorcontrib><creatorcontrib>Bhosale, Trupti</creatorcontrib><creatorcontrib>Singh, Ardhendu Shekhar</creatorcontrib><creatorcontrib>Pillai, Deepa</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doifode, Adesh</au><au>Bhosale, Trupti</au><au>Singh, Ardhendu Shekhar</au><au>Pillai, Deepa</au><au>Gawande, Snehal P.</au><au>Rajguru, Vijaya S.</au><au>Adhau, Sarala P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Evolving AI in agriculture value chain</atitle><btitle>AIP conference proceedings</btitle><date>2024-12-10</date><risdate>2024</risdate><volume>3188</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Digital agricultural technologies (DA) have the potential to improve agriculture’s complex operational inefficiencies, which are a major drag on the Indian economy. We examine and put together the research that is currently accessible on digital agriculture in India and project its revolutionary potential over the next ten years. A continuous transition from individual farms to the entire value chain is taking place thanks to agritech’s ability to enable innovation at numerous points along value chains. Information and communication technology-based solutions are giving way to the Internet of Things and services that are enabled by artificial intelligence and machine learning in this industry. India’s governmental policy reveals evidence of extensive collaboration and investment in the field, with a clear emphasis on the growth of data infrastructure. We identify the main determinants of DA’s success in India as being smallholder dominance, diversity in production systems, the dominance of commodity crops, proximity to metropolitan markets, and state policy. A digital transformation of Indian agriculture is strongly suggested by the review of the technologies already available and their implementations by the public sector, tech giants, information technology leaders, and agri-food tech entrepreneurs in India.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0245204</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.3188 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0245204
source American Institute of Physics (AIP) Journals
subjects Agriculture
Artificial intelligence
Crop production
Internet of Things
Machine learning
Value chain
Value engineering
title Evolving AI in agriculture value chain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A12%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Evolving%20AI%20in%20agriculture%20value%20chain&rft.btitle=AIP%20conference%20proceedings&rft.au=Doifode,%20Adesh&rft.date=2024-12-10&rft.volume=3188&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0245204&rft_dat=%3Cproquest_scita%3E3142698013%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3142698013&rft_id=info:pmid/&rfr_iscdi=true