Waves and non-propagating mode in stratified and rotating magnetohydrodynamic turbulence

In this study, we consider a freely decaying, stably stratified, and rotating homogeneous magneto-hydrodynamic (MHD) turbulent plasma with a vertical background magnetic field ( B0=B0ẑ), aligned with the density gradient (with a constant Brunt–Váisálá frequency N) viewed in a frame rotating uniform...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of Fluids 2024-12, Vol.36 (12)
Hauptverfasser: Mouhali, W., Salhi, A., Lehner, T., Cambon, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Physics of Fluids
container_volume 36
creator Mouhali, W.
Salhi, A.
Lehner, T.
Cambon, C.
description In this study, we consider a freely decaying, stably stratified, and rotating homogeneous magneto-hydrodynamic (MHD) turbulent plasma with a vertical background magnetic field ( B0=B0ẑ), aligned with the density gradient (with a constant Brunt–Váisálá frequency N) viewed in a frame rotating uniformly around the vertical axis ( Ω0=Ω0ẑ). Quasi-linear theory is used to analyze the flow dynamics for an inviscid and non-diffusive Boussinesq fluid. We perform a normal mode decomposition emphasizing three types of motions: a non-propagating (NP) mode, which is no longer a vortex mode, and slow and fast magneto-inertia-gravity waves. The total energy as well as the L2 norm, say Γ, of the magnetic induction potential scalar (MIPS), which remains similar to the potential enstrophy for non-magnetized rotating and stratified flows, are inviscid invariants. In contrast with the potential vorticity for non-magnetized rotating and stratified flows, the MIPS is not affected by system rotation in the quasi-linear limit, and this is the effect of rotation which presumes an inverse cascade of energy in the equilibrium statistical mechanics. We characterized the system setting up our investigation from the point of view of equilibrium statistical mechanics in the limit of small Froude number and small Alfvén–Mach number. In this limit, the non-propagating quantity Γ can be approximated by its quadratic part that explicitly depends only on the vertical component of the fluctuating magnetic field and the density fluctuations. We demonstrate that the partition function restricted to the non-propagating manifold does not indicate an inverse cascade of energy.
doi_str_mv 10.1063/5.0243689
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0243689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3145864984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-ccc0f3c27aaf2905ea88bc6ea0a43a537af7dbda97e20c778550d14ef1551fac3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_8GCJ4XVZLP52GMpaoWCF0VvYZqPNqVNarJb6L93a4vePM0w8_DOOy9C1wTfE8zpA7vHVU25bE7QgGDZlIJzfrrvBS45p-QcXeS8xBjTpuID9PkBW5sLCKYIMZSbFDcwh9aHebGOxhY-FLlN_cB5a36wFNvjHubBtnGxMymaXYC110XbpVm3skHbS3TmYJXt1bEO0fvT49t4Uk5fn1_Go2mpKyLaUmuNHdWVAHBVg5kFKWeaW8BQU2BUgBNmZqARtsJaCMkYNqS2jjBGHGg6RHcH3QWs1Cb5NaSdiuDVZDRVPuRO4VoyiSnfkh6-OcD9n1-dza1axi6F3p-ipGaS142se-r2QOkUc07W_eoSrPYpK6aOKf-dz9rvc4nhH_gbLHh9Wg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3145864984</pqid></control><display><type>article</type><title>Waves and non-propagating mode in stratified and rotating magnetohydrodynamic turbulence</title><source>AIP Journals Complete</source><creator>Mouhali, W. ; Salhi, A. ; Lehner, T. ; Cambon, C.</creator><creatorcontrib>Mouhali, W. ; Salhi, A. ; Lehner, T. ; Cambon, C.</creatorcontrib><description>In this study, we consider a freely decaying, stably stratified, and rotating homogeneous magneto-hydrodynamic (MHD) turbulent plasma with a vertical background magnetic field ( B0=B0ẑ), aligned with the density gradient (with a constant Brunt–Váisálá frequency N) viewed in a frame rotating uniformly around the vertical axis ( Ω0=Ω0ẑ). Quasi-linear theory is used to analyze the flow dynamics for an inviscid and non-diffusive Boussinesq fluid. We perform a normal mode decomposition emphasizing three types of motions: a non-propagating (NP) mode, which is no longer a vortex mode, and slow and fast magneto-inertia-gravity waves. The total energy as well as the L2 norm, say Γ, of the magnetic induction potential scalar (MIPS), which remains similar to the potential enstrophy for non-magnetized rotating and stratified flows, are inviscid invariants. In contrast with the potential vorticity for non-magnetized rotating and stratified flows, the MIPS is not affected by system rotation in the quasi-linear limit, and this is the effect of rotation which presumes an inverse cascade of energy in the equilibrium statistical mechanics. We characterized the system setting up our investigation from the point of view of equilibrium statistical mechanics in the limit of small Froude number and small Alfvén–Mach number. In this limit, the non-propagating quantity Γ can be approximated by its quadratic part that explicitly depends only on the vertical component of the fluctuating magnetic field and the density fluctuations. We demonstrate that the partition function restricted to the non-propagating manifold does not indicate an inverse cascade of energy.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0243689</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boussinesq equations ; Density ; Fluid flow ; Froude number ; Gravity waves ; Mach number ; Magnetic fields ; Magnetic induction ; Magnetohydrodynamic turbulence ; Partitions (mathematics) ; Propagation modes ; Rotating plasmas ; Rotation ; Sciences of the Universe ; Statistical mechanics ; Stratified flow ; Vorticity ; Wave propagation</subject><ispartof>Physics of Fluids, 2024-12, Vol.36 (12)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-ccc0f3c27aaf2905ea88bc6ea0a43a537af7dbda97e20c778550d14ef1551fac3</cites><orcidid>0000-0002-3154-345X ; 0000-0002-3964-4204 ; 0000-0002-9646-8788 ; 0000-0002-6825-5195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,881,4498,27903,27904</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-04858036$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mouhali, W.</creatorcontrib><creatorcontrib>Salhi, A.</creatorcontrib><creatorcontrib>Lehner, T.</creatorcontrib><creatorcontrib>Cambon, C.</creatorcontrib><title>Waves and non-propagating mode in stratified and rotating magnetohydrodynamic turbulence</title><title>Physics of Fluids</title><description>In this study, we consider a freely decaying, stably stratified, and rotating homogeneous magneto-hydrodynamic (MHD) turbulent plasma with a vertical background magnetic field ( B0=B0ẑ), aligned with the density gradient (with a constant Brunt–Váisálá frequency N) viewed in a frame rotating uniformly around the vertical axis ( Ω0=Ω0ẑ). Quasi-linear theory is used to analyze the flow dynamics for an inviscid and non-diffusive Boussinesq fluid. We perform a normal mode decomposition emphasizing three types of motions: a non-propagating (NP) mode, which is no longer a vortex mode, and slow and fast magneto-inertia-gravity waves. The total energy as well as the L2 norm, say Γ, of the magnetic induction potential scalar (MIPS), which remains similar to the potential enstrophy for non-magnetized rotating and stratified flows, are inviscid invariants. In contrast with the potential vorticity for non-magnetized rotating and stratified flows, the MIPS is not affected by system rotation in the quasi-linear limit, and this is the effect of rotation which presumes an inverse cascade of energy in the equilibrium statistical mechanics. We characterized the system setting up our investigation from the point of view of equilibrium statistical mechanics in the limit of small Froude number and small Alfvén–Mach number. In this limit, the non-propagating quantity Γ can be approximated by its quadratic part that explicitly depends only on the vertical component of the fluctuating magnetic field and the density fluctuations. We demonstrate that the partition function restricted to the non-propagating manifold does not indicate an inverse cascade of energy.</description><subject>Boussinesq equations</subject><subject>Density</subject><subject>Fluid flow</subject><subject>Froude number</subject><subject>Gravity waves</subject><subject>Mach number</subject><subject>Magnetic fields</subject><subject>Magnetic induction</subject><subject>Magnetohydrodynamic turbulence</subject><subject>Partitions (mathematics)</subject><subject>Propagation modes</subject><subject>Rotating plasmas</subject><subject>Rotation</subject><subject>Sciences of the Universe</subject><subject>Statistical mechanics</subject><subject>Stratified flow</subject><subject>Vorticity</subject><subject>Wave propagation</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_8GCJ4XVZLP52GMpaoWCF0VvYZqPNqVNarJb6L93a4vePM0w8_DOOy9C1wTfE8zpA7vHVU25bE7QgGDZlIJzfrrvBS45p-QcXeS8xBjTpuID9PkBW5sLCKYIMZSbFDcwh9aHebGOxhY-FLlN_cB5a36wFNvjHubBtnGxMymaXYC110XbpVm3skHbS3TmYJXt1bEO0fvT49t4Uk5fn1_Go2mpKyLaUmuNHdWVAHBVg5kFKWeaW8BQU2BUgBNmZqARtsJaCMkYNqS2jjBGHGg6RHcH3QWs1Cb5NaSdiuDVZDRVPuRO4VoyiSnfkh6-OcD9n1-dza1axi6F3p-ipGaS142se-r2QOkUc07W_eoSrPYpK6aOKf-dz9rvc4nhH_gbLHh9Wg</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Mouhali, W.</creator><creator>Salhi, A.</creator><creator>Lehner, T.</creator><creator>Cambon, C.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3154-345X</orcidid><orcidid>https://orcid.org/0000-0002-3964-4204</orcidid><orcidid>https://orcid.org/0000-0002-9646-8788</orcidid><orcidid>https://orcid.org/0000-0002-6825-5195</orcidid></search><sort><creationdate>20241201</creationdate><title>Waves and non-propagating mode in stratified and rotating magnetohydrodynamic turbulence</title><author>Mouhali, W. ; Salhi, A. ; Lehner, T. ; Cambon, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-ccc0f3c27aaf2905ea88bc6ea0a43a537af7dbda97e20c778550d14ef1551fac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boussinesq equations</topic><topic>Density</topic><topic>Fluid flow</topic><topic>Froude number</topic><topic>Gravity waves</topic><topic>Mach number</topic><topic>Magnetic fields</topic><topic>Magnetic induction</topic><topic>Magnetohydrodynamic turbulence</topic><topic>Partitions (mathematics)</topic><topic>Propagation modes</topic><topic>Rotating plasmas</topic><topic>Rotation</topic><topic>Sciences of the Universe</topic><topic>Statistical mechanics</topic><topic>Stratified flow</topic><topic>Vorticity</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mouhali, W.</creatorcontrib><creatorcontrib>Salhi, A.</creatorcontrib><creatorcontrib>Lehner, T.</creatorcontrib><creatorcontrib>Cambon, C.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physics of Fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mouhali, W.</au><au>Salhi, A.</au><au>Lehner, T.</au><au>Cambon, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Waves and non-propagating mode in stratified and rotating magnetohydrodynamic turbulence</atitle><jtitle>Physics of Fluids</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>36</volume><issue>12</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>In this study, we consider a freely decaying, stably stratified, and rotating homogeneous magneto-hydrodynamic (MHD) turbulent plasma with a vertical background magnetic field ( B0=B0ẑ), aligned with the density gradient (with a constant Brunt–Váisálá frequency N) viewed in a frame rotating uniformly around the vertical axis ( Ω0=Ω0ẑ). Quasi-linear theory is used to analyze the flow dynamics for an inviscid and non-diffusive Boussinesq fluid. We perform a normal mode decomposition emphasizing three types of motions: a non-propagating (NP) mode, which is no longer a vortex mode, and slow and fast magneto-inertia-gravity waves. The total energy as well as the L2 norm, say Γ, of the magnetic induction potential scalar (MIPS), which remains similar to the potential enstrophy for non-magnetized rotating and stratified flows, are inviscid invariants. In contrast with the potential vorticity for non-magnetized rotating and stratified flows, the MIPS is not affected by system rotation in the quasi-linear limit, and this is the effect of rotation which presumes an inverse cascade of energy in the equilibrium statistical mechanics. We characterized the system setting up our investigation from the point of view of equilibrium statistical mechanics in the limit of small Froude number and small Alfvén–Mach number. In this limit, the non-propagating quantity Γ can be approximated by its quadratic part that explicitly depends only on the vertical component of the fluctuating magnetic field and the density fluctuations. We demonstrate that the partition function restricted to the non-propagating manifold does not indicate an inverse cascade of energy.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0243689</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3154-345X</orcidid><orcidid>https://orcid.org/0000-0002-3964-4204</orcidid><orcidid>https://orcid.org/0000-0002-9646-8788</orcidid><orcidid>https://orcid.org/0000-0002-6825-5195</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of Fluids, 2024-12, Vol.36 (12)
issn 1070-6631
1089-7666
language eng
recordid cdi_scitation_primary_10_1063_5_0243689
source AIP Journals Complete
subjects Boussinesq equations
Density
Fluid flow
Froude number
Gravity waves
Mach number
Magnetic fields
Magnetic induction
Magnetohydrodynamic turbulence
Partitions (mathematics)
Propagation modes
Rotating plasmas
Rotation
Sciences of the Universe
Statistical mechanics
Stratified flow
Vorticity
Wave propagation
title Waves and non-propagating mode in stratified and rotating magnetohydrodynamic turbulence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A34%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Waves%20and%20non-propagating%20mode%20in%20stratified%20and%20rotating%20magnetohydrodynamic%20turbulence&rft.jtitle=Physics%20of%20Fluids&rft.au=Mouhali,%20W.&rft.date=2024-12-01&rft.volume=36&rft.issue=12&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0243689&rft_dat=%3Cproquest_scita%3E3145864984%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3145864984&rft_id=info:pmid/&rfr_iscdi=true