Improving occupational safety through assessment of Indian waste disposal sites and stakeholder engagement

In India’s solid waste disposal facilities, occupational safety remains a pressing concern. This research delves into an integrative approach combining advanced sensor technologies, Internet of Things (IoT), and machine learning algorithms—namely Support Vector Machine (SVM), Random Forest (RF), and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gnanasekaran, Chandramowleeswaran, Govindaraj, Manoj, Ramasamy, Mariyappan Muniyappan Sengodan, Suresh, Narapa Reddy Venkatram
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3192
creator Gnanasekaran, Chandramowleeswaran
Govindaraj, Manoj
Ramasamy, Mariyappan Muniyappan Sengodan
Suresh, Narapa Reddy Venkatram
description In India’s solid waste disposal facilities, occupational safety remains a pressing concern. This research delves into an integrative approach combining advanced sensor technologies, Internet of Things (IoT), and machine learning algorithms—namely Support Vector Machine (SVM), Random Forest (RF), and Convolutional Neural Network (CNN)—to enhance safety protocols. These algorithms were used to analyze data from the waste disposal sites, identifying potential hazards and predicting safety risks. The results were promising: CNN displayed a remarkable 98% accuracy in identifying hazardous conditions, SVM followed closely at 95.5%, and RF achieved 93%. Furthermore, the study emphasized the significance of engaging primary stakeholders, with data showing robust participation and satisfaction rates among workers, management, and regulatory bodies. The integration of technology with stakeholder collaboration revealed an effective strategy to not only detect but also proactively address potential safety hazards. The study underscores the potential of innovative technologies coupled with stakeholder involvement in transforming safety measures at waste disposal sites in India, aiming for a reduction in occupational hazards and the promotion of a safer working environment.
doi_str_mv 10.1063/5.0241774
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0241774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3132666667</sourcerecordid><originalsourceid>FETCH-LOGICAL-p634-3b694232ea88098da75825d1a695d81913872362d2a2f35ae338b3ca8504f2bd3</originalsourceid><addsrcrecordid>eNotkE1Lw0AYhBdRsFYP_oMFb0LqfmQ_cpTiR6HgpQdvy9vsJk1tszHvRum_t7Gdy1xmBp4h5J6zGWdaPqkZEzk3Jr8gE64Uz4zm-pJMGCvyTOTy85rcIG4ZE4UxdkK2i33Xx5-mrWksy6GD1MQWdhShCulA06aPQ72hgBgQ96FNNFZ00foGWvoLmAL1DXYRx0qTAlJoPcUEX2ETdz70NLQ11GFs3pKrCnYY7s4-JavXl9X8PVt-vC3mz8us0zLP5FoXuZAigLWssB6MskJ5DrpQ3vKCS2uE1MILEJVUEKS0a1mCVSyvxNrLKXk4zR65voeAyW3j0B-Z0EkuhR5ljqnHUwrLJv1Du65v9tAfHGduvNIpd75S_gFTGmbK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3132666667</pqid></control><display><type>conference_proceeding</type><title>Improving occupational safety through assessment of Indian waste disposal sites and stakeholder engagement</title><source>AIP Journals Complete</source><creator>Gnanasekaran, Chandramowleeswaran ; Govindaraj, Manoj ; Ramasamy, Mariyappan Muniyappan Sengodan ; Suresh, Narapa Reddy Venkatram</creator><contributor>Palanivel, Anand ; Megaraj, Meikandan ; Esakki, Balasubramanian</contributor><creatorcontrib>Gnanasekaran, Chandramowleeswaran ; Govindaraj, Manoj ; Ramasamy, Mariyappan Muniyappan Sengodan ; Suresh, Narapa Reddy Venkatram ; Palanivel, Anand ; Megaraj, Meikandan ; Esakki, Balasubramanian</creatorcontrib><description>In India’s solid waste disposal facilities, occupational safety remains a pressing concern. This research delves into an integrative approach combining advanced sensor technologies, Internet of Things (IoT), and machine learning algorithms—namely Support Vector Machine (SVM), Random Forest (RF), and Convolutional Neural Network (CNN)—to enhance safety protocols. These algorithms were used to analyze data from the waste disposal sites, identifying potential hazards and predicting safety risks. The results were promising: CNN displayed a remarkable 98% accuracy in identifying hazardous conditions, SVM followed closely at 95.5%, and RF achieved 93%. Furthermore, the study emphasized the significance of engaging primary stakeholders, with data showing robust participation and satisfaction rates among workers, management, and regulatory bodies. The integration of technology with stakeholder collaboration revealed an effective strategy to not only detect but also proactively address potential safety hazards. The study underscores the potential of innovative technologies coupled with stakeholder involvement in transforming safety measures at waste disposal sites in India, aiming for a reduction in occupational hazards and the promotion of a safer working environment.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0241774</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Artificial neural networks ; Hazard identification ; Internet of Things ; Machine learning ; Occupational hazards ; Occupational safety ; Safety management ; Safety measures ; Solid wastes ; Staff participation ; Stakeholders ; Support vector machines ; Waste disposal ; Working conditions</subject><ispartof>AIP conference proceedings, 2024, Vol.3192 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0241774$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4497,23910,23911,25119,27903,27904,76131</link.rule.ids></links><search><contributor>Palanivel, Anand</contributor><contributor>Megaraj, Meikandan</contributor><contributor>Esakki, Balasubramanian</contributor><creatorcontrib>Gnanasekaran, Chandramowleeswaran</creatorcontrib><creatorcontrib>Govindaraj, Manoj</creatorcontrib><creatorcontrib>Ramasamy, Mariyappan Muniyappan Sengodan</creatorcontrib><creatorcontrib>Suresh, Narapa Reddy Venkatram</creatorcontrib><title>Improving occupational safety through assessment of Indian waste disposal sites and stakeholder engagement</title><title>AIP conference proceedings</title><description>In India’s solid waste disposal facilities, occupational safety remains a pressing concern. This research delves into an integrative approach combining advanced sensor technologies, Internet of Things (IoT), and machine learning algorithms—namely Support Vector Machine (SVM), Random Forest (RF), and Convolutional Neural Network (CNN)—to enhance safety protocols. These algorithms were used to analyze data from the waste disposal sites, identifying potential hazards and predicting safety risks. The results were promising: CNN displayed a remarkable 98% accuracy in identifying hazardous conditions, SVM followed closely at 95.5%, and RF achieved 93%. Furthermore, the study emphasized the significance of engaging primary stakeholders, with data showing robust participation and satisfaction rates among workers, management, and regulatory bodies. The integration of technology with stakeholder collaboration revealed an effective strategy to not only detect but also proactively address potential safety hazards. The study underscores the potential of innovative technologies coupled with stakeholder involvement in transforming safety measures at waste disposal sites in India, aiming for a reduction in occupational hazards and the promotion of a safer working environment.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Hazard identification</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Occupational hazards</subject><subject>Occupational safety</subject><subject>Safety management</subject><subject>Safety measures</subject><subject>Solid wastes</subject><subject>Staff participation</subject><subject>Stakeholders</subject><subject>Support vector machines</subject><subject>Waste disposal</subject><subject>Working conditions</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1Lw0AYhBdRsFYP_oMFb0LqfmQ_cpTiR6HgpQdvy9vsJk1tszHvRum_t7Gdy1xmBp4h5J6zGWdaPqkZEzk3Jr8gE64Uz4zm-pJMGCvyTOTy85rcIG4ZE4UxdkK2i33Xx5-mrWksy6GD1MQWdhShCulA06aPQ72hgBgQ96FNNFZ00foGWvoLmAL1DXYRx0qTAlJoPcUEX2ETdz70NLQ11GFs3pKrCnYY7s4-JavXl9X8PVt-vC3mz8us0zLP5FoXuZAigLWssB6MskJ5DrpQ3vKCS2uE1MILEJVUEKS0a1mCVSyvxNrLKXk4zR65voeAyW3j0B-Z0EkuhR5ljqnHUwrLJv1Du65v9tAfHGduvNIpd75S_gFTGmbK</recordid><startdate>20241125</startdate><enddate>20241125</enddate><creator>Gnanasekaran, Chandramowleeswaran</creator><creator>Govindaraj, Manoj</creator><creator>Ramasamy, Mariyappan Muniyappan Sengodan</creator><creator>Suresh, Narapa Reddy Venkatram</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20241125</creationdate><title>Improving occupational safety through assessment of Indian waste disposal sites and stakeholder engagement</title><author>Gnanasekaran, Chandramowleeswaran ; Govindaraj, Manoj ; Ramasamy, Mariyappan Muniyappan Sengodan ; Suresh, Narapa Reddy Venkatram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p634-3b694232ea88098da75825d1a695d81913872362d2a2f35ae338b3ca8504f2bd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Hazard identification</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Occupational hazards</topic><topic>Occupational safety</topic><topic>Safety management</topic><topic>Safety measures</topic><topic>Solid wastes</topic><topic>Staff participation</topic><topic>Stakeholders</topic><topic>Support vector machines</topic><topic>Waste disposal</topic><topic>Working conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gnanasekaran, Chandramowleeswaran</creatorcontrib><creatorcontrib>Govindaraj, Manoj</creatorcontrib><creatorcontrib>Ramasamy, Mariyappan Muniyappan Sengodan</creatorcontrib><creatorcontrib>Suresh, Narapa Reddy Venkatram</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gnanasekaran, Chandramowleeswaran</au><au>Govindaraj, Manoj</au><au>Ramasamy, Mariyappan Muniyappan Sengodan</au><au>Suresh, Narapa Reddy Venkatram</au><au>Palanivel, Anand</au><au>Megaraj, Meikandan</au><au>Esakki, Balasubramanian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improving occupational safety through assessment of Indian waste disposal sites and stakeholder engagement</atitle><btitle>AIP conference proceedings</btitle><date>2024-11-25</date><risdate>2024</risdate><volume>3192</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In India’s solid waste disposal facilities, occupational safety remains a pressing concern. This research delves into an integrative approach combining advanced sensor technologies, Internet of Things (IoT), and machine learning algorithms—namely Support Vector Machine (SVM), Random Forest (RF), and Convolutional Neural Network (CNN)—to enhance safety protocols. These algorithms were used to analyze data from the waste disposal sites, identifying potential hazards and predicting safety risks. The results were promising: CNN displayed a remarkable 98% accuracy in identifying hazardous conditions, SVM followed closely at 95.5%, and RF achieved 93%. Furthermore, the study emphasized the significance of engaging primary stakeholders, with data showing robust participation and satisfaction rates among workers, management, and regulatory bodies. The integration of technology with stakeholder collaboration revealed an effective strategy to not only detect but also proactively address potential safety hazards. The study underscores the potential of innovative technologies coupled with stakeholder involvement in transforming safety measures at waste disposal sites in India, aiming for a reduction in occupational hazards and the promotion of a safer working environment.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0241774</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.3192 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0241774
source AIP Journals Complete
subjects Algorithms
Artificial neural networks
Hazard identification
Internet of Things
Machine learning
Occupational hazards
Occupational safety
Safety management
Safety measures
Solid wastes
Staff participation
Stakeholders
Support vector machines
Waste disposal
Working conditions
title Improving occupational safety through assessment of Indian waste disposal sites and stakeholder engagement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A41%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improving%20occupational%20safety%20through%20assessment%20of%20Indian%20waste%20disposal%20sites%20and%20stakeholder%20engagement&rft.btitle=AIP%20conference%20proceedings&rft.au=Gnanasekaran,%20Chandramowleeswaran&rft.date=2024-11-25&rft.volume=3192&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0241774&rft_dat=%3Cproquest_scita%3E3132666667%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3132666667&rft_id=info:pmid/&rfr_iscdi=true