IoT and strategic management in action: Pilot testing for efficient e-waste collection in rural Indian households

In the rapidly digitalizing world, the management of electronic waste (e-waste) has emerged as a pressing concern, especially in developing nations like India. This research introduced a dynamic e-waste collection system in rural India, leveraging the Internet of Things (IoT), strategic management,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gnanasekaran, Chandramowleeswaran, Govindaraj, Manoj, Jayavelu, Sridevi, Chandrasekar, Vijai
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3192
creator Gnanasekaran, Chandramowleeswaran
Govindaraj, Manoj
Jayavelu, Sridevi
Chandrasekar, Vijai
description In the rapidly digitalizing world, the management of electronic waste (e-waste) has emerged as a pressing concern, especially in developing nations like India. This research introduced a dynamic e-waste collection system in rural India, leveraging the Internet of Things (IoT), strategic management, and machine learning. The pilot implementation witnessed a remarkable threefold increase in monthly e-waste collection, soaring from 150 to 420 tonnes. Furthermore, the average collection time was slashed from 10 days to just 3, while community awareness about e-waste management surged from 30% to 78%. Utilizing machine learning models like ARIMA, geospatial analysis, and Prophet, the system adeptly forecasted e-waste generation patterns, thereby optimizing collection strategies. Despite its promising results, challenges such as IoT infrastructure in remote areas and varying rural landscapes necessitate further refinements. The study not only underscores the potential of technology and strategy in addressing e-waste challenges but also highlights a scalable model that can be adapted for similar regions globally, paving the way for sustainable waste management and environmentally friendly development.
doi_str_mv 10.1063/5.0241773
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0241773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3132666790</sourcerecordid><originalsourceid>FETCH-LOGICAL-p633-b6edca8b6e68c6834aeb2e8a73f5825f7511cf3cf5d7327f89e766e9296299ef3</originalsourceid><addsrcrecordid>eNotkMtKAzEYhYMoWKsL3yDgTpiayySZuJPipVDQRRfuhjTzp02ZJu0kg_j2ztiuzuY7Fw5C95TMKJH8ScwIK6lS_AJNqBC0UJLKSzQhRJcFK_n3NbpJaUcI00pVE3RcxBU2ocEpdybDxlu8N8FsYA8hYx-wsdnH8Iy_fBszzpCyDxvsYofBOW_9iEHxY1IGbGPbwj8_Oru-My1ehMabgLexT7CNbZNu0ZUzbYK7s07R6u11Nf8olp_vi_nLsjhIzou1hMaaahBZWVnx0sCaQWUUd6JiwilBqXXcOtEozpSrNCgpQTMtmdbg-BQ9nGIPXTz2w-x6F_suDI01p5xJKZUmA_V4opL12YzL60Pn96b7rSmpx0drUZ8f5X_tgmlU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3132666790</pqid></control><display><type>conference_proceeding</type><title>IoT and strategic management in action: Pilot testing for efficient e-waste collection in rural Indian households</title><source>AIP Journals Complete</source><creator>Gnanasekaran, Chandramowleeswaran ; Govindaraj, Manoj ; Jayavelu, Sridevi ; Chandrasekar, Vijai</creator><contributor>Palanivel, Anand ; Megaraj, Meikandan ; Esakki, Balasubramanian</contributor><creatorcontrib>Gnanasekaran, Chandramowleeswaran ; Govindaraj, Manoj ; Jayavelu, Sridevi ; Chandrasekar, Vijai ; Palanivel, Anand ; Megaraj, Meikandan ; Esakki, Balasubramanian</creatorcontrib><description>In the rapidly digitalizing world, the management of electronic waste (e-waste) has emerged as a pressing concern, especially in developing nations like India. This research introduced a dynamic e-waste collection system in rural India, leveraging the Internet of Things (IoT), strategic management, and machine learning. The pilot implementation witnessed a remarkable threefold increase in monthly e-waste collection, soaring from 150 to 420 tonnes. Furthermore, the average collection time was slashed from 10 days to just 3, while community awareness about e-waste management surged from 30% to 78%. Utilizing machine learning models like ARIMA, geospatial analysis, and Prophet, the system adeptly forecasted e-waste generation patterns, thereby optimizing collection strategies. Despite its promising results, challenges such as IoT infrastructure in remote areas and varying rural landscapes necessitate further refinements. The study not only underscores the potential of technology and strategy in addressing e-waste challenges but also highlights a scalable model that can be adapted for similar regions globally, paving the way for sustainable waste management and environmentally friendly development.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0241773</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Autoregressive models ; Collection ; Developing countries ; Digitization ; Electronic waste ; Households ; Internet of Things ; LDCs ; Machine learning ; Spatial analysis ; Strategic management ; Waste management</subject><ispartof>AIP conference proceedings, 2024, Vol.3192 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0241773$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4497,23910,23911,25119,27903,27904,76131</link.rule.ids></links><search><contributor>Palanivel, Anand</contributor><contributor>Megaraj, Meikandan</contributor><contributor>Esakki, Balasubramanian</contributor><creatorcontrib>Gnanasekaran, Chandramowleeswaran</creatorcontrib><creatorcontrib>Govindaraj, Manoj</creatorcontrib><creatorcontrib>Jayavelu, Sridevi</creatorcontrib><creatorcontrib>Chandrasekar, Vijai</creatorcontrib><title>IoT and strategic management in action: Pilot testing for efficient e-waste collection in rural Indian households</title><title>AIP conference proceedings</title><description>In the rapidly digitalizing world, the management of electronic waste (e-waste) has emerged as a pressing concern, especially in developing nations like India. This research introduced a dynamic e-waste collection system in rural India, leveraging the Internet of Things (IoT), strategic management, and machine learning. The pilot implementation witnessed a remarkable threefold increase in monthly e-waste collection, soaring from 150 to 420 tonnes. Furthermore, the average collection time was slashed from 10 days to just 3, while community awareness about e-waste management surged from 30% to 78%. Utilizing machine learning models like ARIMA, geospatial analysis, and Prophet, the system adeptly forecasted e-waste generation patterns, thereby optimizing collection strategies. Despite its promising results, challenges such as IoT infrastructure in remote areas and varying rural landscapes necessitate further refinements. The study not only underscores the potential of technology and strategy in addressing e-waste challenges but also highlights a scalable model that can be adapted for similar regions globally, paving the way for sustainable waste management and environmentally friendly development.</description><subject>Autoregressive models</subject><subject>Collection</subject><subject>Developing countries</subject><subject>Digitization</subject><subject>Electronic waste</subject><subject>Households</subject><subject>Internet of Things</subject><subject>LDCs</subject><subject>Machine learning</subject><subject>Spatial analysis</subject><subject>Strategic management</subject><subject>Waste management</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkMtKAzEYhYMoWKsL3yDgTpiayySZuJPipVDQRRfuhjTzp02ZJu0kg_j2ztiuzuY7Fw5C95TMKJH8ScwIK6lS_AJNqBC0UJLKSzQhRJcFK_n3NbpJaUcI00pVE3RcxBU2ocEpdybDxlu8N8FsYA8hYx-wsdnH8Iy_fBszzpCyDxvsYofBOW_9iEHxY1IGbGPbwj8_Oru-My1ehMabgLexT7CNbZNu0ZUzbYK7s07R6u11Nf8olp_vi_nLsjhIzou1hMaaahBZWVnx0sCaQWUUd6JiwilBqXXcOtEozpSrNCgpQTMtmdbg-BQ9nGIPXTz2w-x6F_suDI01p5xJKZUmA_V4opL12YzL60Pn96b7rSmpx0drUZ8f5X_tgmlU</recordid><startdate>20241125</startdate><enddate>20241125</enddate><creator>Gnanasekaran, Chandramowleeswaran</creator><creator>Govindaraj, Manoj</creator><creator>Jayavelu, Sridevi</creator><creator>Chandrasekar, Vijai</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20241125</creationdate><title>IoT and strategic management in action: Pilot testing for efficient e-waste collection in rural Indian households</title><author>Gnanasekaran, Chandramowleeswaran ; Govindaraj, Manoj ; Jayavelu, Sridevi ; Chandrasekar, Vijai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p633-b6edca8b6e68c6834aeb2e8a73f5825f7511cf3cf5d7327f89e766e9296299ef3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autoregressive models</topic><topic>Collection</topic><topic>Developing countries</topic><topic>Digitization</topic><topic>Electronic waste</topic><topic>Households</topic><topic>Internet of Things</topic><topic>LDCs</topic><topic>Machine learning</topic><topic>Spatial analysis</topic><topic>Strategic management</topic><topic>Waste management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gnanasekaran, Chandramowleeswaran</creatorcontrib><creatorcontrib>Govindaraj, Manoj</creatorcontrib><creatorcontrib>Jayavelu, Sridevi</creatorcontrib><creatorcontrib>Chandrasekar, Vijai</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gnanasekaran, Chandramowleeswaran</au><au>Govindaraj, Manoj</au><au>Jayavelu, Sridevi</au><au>Chandrasekar, Vijai</au><au>Palanivel, Anand</au><au>Megaraj, Meikandan</au><au>Esakki, Balasubramanian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>IoT and strategic management in action: Pilot testing for efficient e-waste collection in rural Indian households</atitle><btitle>AIP conference proceedings</btitle><date>2024-11-25</date><risdate>2024</risdate><volume>3192</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In the rapidly digitalizing world, the management of electronic waste (e-waste) has emerged as a pressing concern, especially in developing nations like India. This research introduced a dynamic e-waste collection system in rural India, leveraging the Internet of Things (IoT), strategic management, and machine learning. The pilot implementation witnessed a remarkable threefold increase in monthly e-waste collection, soaring from 150 to 420 tonnes. Furthermore, the average collection time was slashed from 10 days to just 3, while community awareness about e-waste management surged from 30% to 78%. Utilizing machine learning models like ARIMA, geospatial analysis, and Prophet, the system adeptly forecasted e-waste generation patterns, thereby optimizing collection strategies. Despite its promising results, challenges such as IoT infrastructure in remote areas and varying rural landscapes necessitate further refinements. The study not only underscores the potential of technology and strategy in addressing e-waste challenges but also highlights a scalable model that can be adapted for similar regions globally, paving the way for sustainable waste management and environmentally friendly development.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0241773</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.3192 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0241773
source AIP Journals Complete
subjects Autoregressive models
Collection
Developing countries
Digitization
Electronic waste
Households
Internet of Things
LDCs
Machine learning
Spatial analysis
Strategic management
Waste management
title IoT and strategic management in action: Pilot testing for efficient e-waste collection in rural Indian households
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A54%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=IoT%20and%20strategic%20management%20in%20action:%20Pilot%20testing%20for%20efficient%20e-waste%20collection%20in%20rural%20Indian%20households&rft.btitle=AIP%20conference%20proceedings&rft.au=Gnanasekaran,%20Chandramowleeswaran&rft.date=2024-11-25&rft.volume=3192&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0241773&rft_dat=%3Cproquest_scita%3E3132666790%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3132666790&rft_id=info:pmid/&rfr_iscdi=true