IoT and strategic management in action: Pilot testing for efficient e-waste collection in rural Indian households
In the rapidly digitalizing world, the management of electronic waste (e-waste) has emerged as a pressing concern, especially in developing nations like India. This research introduced a dynamic e-waste collection system in rural India, leveraging the Internet of Things (IoT), strategic management,...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 3192 |
creator | Gnanasekaran, Chandramowleeswaran Govindaraj, Manoj Jayavelu, Sridevi Chandrasekar, Vijai |
description | In the rapidly digitalizing world, the management of electronic waste (e-waste) has emerged as a pressing concern, especially in developing nations like India. This research introduced a dynamic e-waste collection system in rural India, leveraging the Internet of Things (IoT), strategic management, and machine learning. The pilot implementation witnessed a remarkable threefold increase in monthly e-waste collection, soaring from 150 to 420 tonnes. Furthermore, the average collection time was slashed from 10 days to just 3, while community awareness about e-waste management surged from 30% to 78%. Utilizing machine learning models like ARIMA, geospatial analysis, and Prophet, the system adeptly forecasted e-waste generation patterns, thereby optimizing collection strategies. Despite its promising results, challenges such as IoT infrastructure in remote areas and varying rural landscapes necessitate further refinements. The study not only underscores the potential of technology and strategy in addressing e-waste challenges but also highlights a scalable model that can be adapted for similar regions globally, paving the way for sustainable waste management and environmentally friendly development. |
doi_str_mv | 10.1063/5.0241773 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0241773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3132666790</sourcerecordid><originalsourceid>FETCH-LOGICAL-p633-b6edca8b6e68c6834aeb2e8a73f5825f7511cf3cf5d7327f89e766e9296299ef3</originalsourceid><addsrcrecordid>eNotkMtKAzEYhYMoWKsL3yDgTpiayySZuJPipVDQRRfuhjTzp02ZJu0kg_j2ztiuzuY7Fw5C95TMKJH8ScwIK6lS_AJNqBC0UJLKSzQhRJcFK_n3NbpJaUcI00pVE3RcxBU2ocEpdybDxlu8N8FsYA8hYx-wsdnH8Iy_fBszzpCyDxvsYofBOW_9iEHxY1IGbGPbwj8_Oru-My1ehMabgLexT7CNbZNu0ZUzbYK7s07R6u11Nf8olp_vi_nLsjhIzou1hMaaahBZWVnx0sCaQWUUd6JiwilBqXXcOtEozpSrNCgpQTMtmdbg-BQ9nGIPXTz2w-x6F_suDI01p5xJKZUmA_V4opL12YzL60Pn96b7rSmpx0drUZ8f5X_tgmlU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3132666790</pqid></control><display><type>conference_proceeding</type><title>IoT and strategic management in action: Pilot testing for efficient e-waste collection in rural Indian households</title><source>AIP Journals Complete</source><creator>Gnanasekaran, Chandramowleeswaran ; Govindaraj, Manoj ; Jayavelu, Sridevi ; Chandrasekar, Vijai</creator><contributor>Palanivel, Anand ; Megaraj, Meikandan ; Esakki, Balasubramanian</contributor><creatorcontrib>Gnanasekaran, Chandramowleeswaran ; Govindaraj, Manoj ; Jayavelu, Sridevi ; Chandrasekar, Vijai ; Palanivel, Anand ; Megaraj, Meikandan ; Esakki, Balasubramanian</creatorcontrib><description>In the rapidly digitalizing world, the management of electronic waste (e-waste) has emerged as a pressing concern, especially in developing nations like India. This research introduced a dynamic e-waste collection system in rural India, leveraging the Internet of Things (IoT), strategic management, and machine learning. The pilot implementation witnessed a remarkable threefold increase in monthly e-waste collection, soaring from 150 to 420 tonnes. Furthermore, the average collection time was slashed from 10 days to just 3, while community awareness about e-waste management surged from 30% to 78%. Utilizing machine learning models like ARIMA, geospatial analysis, and Prophet, the system adeptly forecasted e-waste generation patterns, thereby optimizing collection strategies. Despite its promising results, challenges such as IoT infrastructure in remote areas and varying rural landscapes necessitate further refinements. The study not only underscores the potential of technology and strategy in addressing e-waste challenges but also highlights a scalable model that can be adapted for similar regions globally, paving the way for sustainable waste management and environmentally friendly development.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0241773</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Autoregressive models ; Collection ; Developing countries ; Digitization ; Electronic waste ; Households ; Internet of Things ; LDCs ; Machine learning ; Spatial analysis ; Strategic management ; Waste management</subject><ispartof>AIP conference proceedings, 2024, Vol.3192 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0241773$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4497,23910,23911,25119,27903,27904,76131</link.rule.ids></links><search><contributor>Palanivel, Anand</contributor><contributor>Megaraj, Meikandan</contributor><contributor>Esakki, Balasubramanian</contributor><creatorcontrib>Gnanasekaran, Chandramowleeswaran</creatorcontrib><creatorcontrib>Govindaraj, Manoj</creatorcontrib><creatorcontrib>Jayavelu, Sridevi</creatorcontrib><creatorcontrib>Chandrasekar, Vijai</creatorcontrib><title>IoT and strategic management in action: Pilot testing for efficient e-waste collection in rural Indian households</title><title>AIP conference proceedings</title><description>In the rapidly digitalizing world, the management of electronic waste (e-waste) has emerged as a pressing concern, especially in developing nations like India. This research introduced a dynamic e-waste collection system in rural India, leveraging the Internet of Things (IoT), strategic management, and machine learning. The pilot implementation witnessed a remarkable threefold increase in monthly e-waste collection, soaring from 150 to 420 tonnes. Furthermore, the average collection time was slashed from 10 days to just 3, while community awareness about e-waste management surged from 30% to 78%. Utilizing machine learning models like ARIMA, geospatial analysis, and Prophet, the system adeptly forecasted e-waste generation patterns, thereby optimizing collection strategies. Despite its promising results, challenges such as IoT infrastructure in remote areas and varying rural landscapes necessitate further refinements. The study not only underscores the potential of technology and strategy in addressing e-waste challenges but also highlights a scalable model that can be adapted for similar regions globally, paving the way for sustainable waste management and environmentally friendly development.</description><subject>Autoregressive models</subject><subject>Collection</subject><subject>Developing countries</subject><subject>Digitization</subject><subject>Electronic waste</subject><subject>Households</subject><subject>Internet of Things</subject><subject>LDCs</subject><subject>Machine learning</subject><subject>Spatial analysis</subject><subject>Strategic management</subject><subject>Waste management</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkMtKAzEYhYMoWKsL3yDgTpiayySZuJPipVDQRRfuhjTzp02ZJu0kg_j2ztiuzuY7Fw5C95TMKJH8ScwIK6lS_AJNqBC0UJLKSzQhRJcFK_n3NbpJaUcI00pVE3RcxBU2ocEpdybDxlu8N8FsYA8hYx-wsdnH8Iy_fBszzpCyDxvsYofBOW_9iEHxY1IGbGPbwj8_Oru-My1ehMabgLexT7CNbZNu0ZUzbYK7s07R6u11Nf8olp_vi_nLsjhIzou1hMaaahBZWVnx0sCaQWUUd6JiwilBqXXcOtEozpSrNCgpQTMtmdbg-BQ9nGIPXTz2w-x6F_suDI01p5xJKZUmA_V4opL12YzL60Pn96b7rSmpx0drUZ8f5X_tgmlU</recordid><startdate>20241125</startdate><enddate>20241125</enddate><creator>Gnanasekaran, Chandramowleeswaran</creator><creator>Govindaraj, Manoj</creator><creator>Jayavelu, Sridevi</creator><creator>Chandrasekar, Vijai</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20241125</creationdate><title>IoT and strategic management in action: Pilot testing for efficient e-waste collection in rural Indian households</title><author>Gnanasekaran, Chandramowleeswaran ; Govindaraj, Manoj ; Jayavelu, Sridevi ; Chandrasekar, Vijai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p633-b6edca8b6e68c6834aeb2e8a73f5825f7511cf3cf5d7327f89e766e9296299ef3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autoregressive models</topic><topic>Collection</topic><topic>Developing countries</topic><topic>Digitization</topic><topic>Electronic waste</topic><topic>Households</topic><topic>Internet of Things</topic><topic>LDCs</topic><topic>Machine learning</topic><topic>Spatial analysis</topic><topic>Strategic management</topic><topic>Waste management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gnanasekaran, Chandramowleeswaran</creatorcontrib><creatorcontrib>Govindaraj, Manoj</creatorcontrib><creatorcontrib>Jayavelu, Sridevi</creatorcontrib><creatorcontrib>Chandrasekar, Vijai</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gnanasekaran, Chandramowleeswaran</au><au>Govindaraj, Manoj</au><au>Jayavelu, Sridevi</au><au>Chandrasekar, Vijai</au><au>Palanivel, Anand</au><au>Megaraj, Meikandan</au><au>Esakki, Balasubramanian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>IoT and strategic management in action: Pilot testing for efficient e-waste collection in rural Indian households</atitle><btitle>AIP conference proceedings</btitle><date>2024-11-25</date><risdate>2024</risdate><volume>3192</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In the rapidly digitalizing world, the management of electronic waste (e-waste) has emerged as a pressing concern, especially in developing nations like India. This research introduced a dynamic e-waste collection system in rural India, leveraging the Internet of Things (IoT), strategic management, and machine learning. The pilot implementation witnessed a remarkable threefold increase in monthly e-waste collection, soaring from 150 to 420 tonnes. Furthermore, the average collection time was slashed from 10 days to just 3, while community awareness about e-waste management surged from 30% to 78%. Utilizing machine learning models like ARIMA, geospatial analysis, and Prophet, the system adeptly forecasted e-waste generation patterns, thereby optimizing collection strategies. Despite its promising results, challenges such as IoT infrastructure in remote areas and varying rural landscapes necessitate further refinements. The study not only underscores the potential of technology and strategy in addressing e-waste challenges but also highlights a scalable model that can be adapted for similar regions globally, paving the way for sustainable waste management and environmentally friendly development.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0241773</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2024, Vol.3192 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0241773 |
source | AIP Journals Complete |
subjects | Autoregressive models Collection Developing countries Digitization Electronic waste Households Internet of Things LDCs Machine learning Spatial analysis Strategic management Waste management |
title | IoT and strategic management in action: Pilot testing for efficient e-waste collection in rural Indian households |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A54%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=IoT%20and%20strategic%20management%20in%20action:%20Pilot%20testing%20for%20efficient%20e-waste%20collection%20in%20rural%20Indian%20households&rft.btitle=AIP%20conference%20proceedings&rft.au=Gnanasekaran,%20Chandramowleeswaran&rft.date=2024-11-25&rft.volume=3192&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0241773&rft_dat=%3Cproquest_scita%3E3132666790%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3132666790&rft_id=info:pmid/&rfr_iscdi=true |