Variations of physical and mechanical properties of granite with different cooling treatments: An experimental study

The temperature gradient plays a critical role in the evolution of pore structure and mechanical properties of rock, but the underlying mechanisms remain unclear. This study conducts experiments on granite to investigate the effects of temperature gradients on pore structure and rupture propagation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2024-12, Vol.36 (12)
Hauptverfasser: Long, Kun, Wu, Yeqiu, Zhang, Ruijie, Chen, Ziqi, Yang, Hongyun, Cheng, Yugang, Wu, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Physics of fluids (1994)
container_volume 36
creator Long, Kun
Wu, Yeqiu
Zhang, Ruijie
Chen, Ziqi
Yang, Hongyun
Cheng, Yugang
Wu, Yang
description The temperature gradient plays a critical role in the evolution of pore structure and mechanical properties of rock, but the underlying mechanisms remain unclear. This study conducts experiments on granite to investigate the effects of temperature gradients on pore structure and rupture propagation under different media, specifically liquid nitrogen and air. The pore structures and granite's transverse relaxation time (T2) are quantified using nuclear magnetic resonance (NMR). Then, Brazilian disk experiments are performed to explore the mechanical properties of granite following heating-holding treatments. Under the same temperature gradient, cooling with liquid nitrogen significantly influences the pore structures and mechanical properties of granite compared to air cooling. As the heat treatment temperature gradient increases, the mass loss rate, volume expansion ratio, and NMR porosity of granite increase, while the density, longitudinal wave velocity, and peak stress decrease. Splitting failure is caused by the constant propagation of the prominent cracks generated from the loading end to the load-bearing end. With increasing temperature in the thermal treatment, the secondary cracks increase and propagate toward the direction of the main cracks under the loading effect. These research results can provide a reference for developing high-temperature reservoirs and the technology for fracture initiation in such reservoirs.
doi_str_mv 10.1063/5.0240758
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0240758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3134957586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-9e13ede12b288eeaac4cf7b523368f64d7ba35b8134350e337fef581184110283</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKsL_0HAlcLUZDLJZNwV8QUFN-o2ZDI3bUo7GZMU7b83faxd3QffOfdyELqmZEKJYPd8QsqK1FyeoBElsilqIcTprq9JIQSj5-gixiUhhDWlGKH0pYPTyfk-Ym_xsNhGZ_QK677DazAL3e_HIfgBQnKwp-YhrxPgH5cWuHPWQoA-YeP9yvVznALotM6b-ICnPYbfLHW7ORvFtOm2l-jM6lWEq2Mdo8_np4_H12L2_vL2OJ0VhsoyFQ1QBh3Qsi2lBNDaVMbWLS8ZE9KKqqtbzXgrKasYJ8BYbcFySamsKCWlZGN0c_DN739vICa19JvQ55OKZVHDc04iU7cHygQfYwCrhvyuDltFidqFqrg6hprZuwMbjUv72P6B_wAGpngT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3134957586</pqid></control><display><type>article</type><title>Variations of physical and mechanical properties of granite with different cooling treatments: An experimental study</title><source>AIP Journals Complete</source><creator>Long, Kun ; Wu, Yeqiu ; Zhang, Ruijie ; Chen, Ziqi ; Yang, Hongyun ; Cheng, Yugang ; Wu, Yang</creator><creatorcontrib>Long, Kun ; Wu, Yeqiu ; Zhang, Ruijie ; Chen, Ziqi ; Yang, Hongyun ; Cheng, Yugang ; Wu, Yang</creatorcontrib><description>The temperature gradient plays a critical role in the evolution of pore structure and mechanical properties of rock, but the underlying mechanisms remain unclear. This study conducts experiments on granite to investigate the effects of temperature gradients on pore structure and rupture propagation under different media, specifically liquid nitrogen and air. The pore structures and granite's transverse relaxation time (T2) are quantified using nuclear magnetic resonance (NMR). Then, Brazilian disk experiments are performed to explore the mechanical properties of granite following heating-holding treatments. Under the same temperature gradient, cooling with liquid nitrogen significantly influences the pore structures and mechanical properties of granite compared to air cooling. As the heat treatment temperature gradient increases, the mass loss rate, volume expansion ratio, and NMR porosity of granite increase, while the density, longitudinal wave velocity, and peak stress decrease. Splitting failure is caused by the constant propagation of the prominent cracks generated from the loading end to the load-bearing end. With increasing temperature in the thermal treatment, the secondary cracks increase and propagate toward the direction of the main cracks under the loading effect. These research results can provide a reference for developing high-temperature reservoirs and the technology for fracture initiation in such reservoirs.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0240758</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Air cooling ; Bearing (direction) ; Cooling ; Crack initiation ; Crack propagation ; Fracture mechanics ; Granite ; Heat treatment ; High temperature ; Liquid nitrogen ; Longitudinal waves ; Magnetic induction ; Magnetic properties ; Mechanical properties ; NMR ; Nuclear magnetic resonance ; Physical properties ; Porosity ; Propagation velocity ; Relaxation time ; Reservoirs ; Rock properties ; Stress propagation ; Temperature effects ; Wave propagation ; Wave velocity</subject><ispartof>Physics of fluids (1994), 2024-12, Vol.36 (12)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-9e13ede12b288eeaac4cf7b523368f64d7ba35b8134350e337fef581184110283</cites><orcidid>0009-0001-0939-9850 ; 0009-0007-1984-0391</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Long, Kun</creatorcontrib><creatorcontrib>Wu, Yeqiu</creatorcontrib><creatorcontrib>Zhang, Ruijie</creatorcontrib><creatorcontrib>Chen, Ziqi</creatorcontrib><creatorcontrib>Yang, Hongyun</creatorcontrib><creatorcontrib>Cheng, Yugang</creatorcontrib><creatorcontrib>Wu, Yang</creatorcontrib><title>Variations of physical and mechanical properties of granite with different cooling treatments: An experimental study</title><title>Physics of fluids (1994)</title><description>The temperature gradient plays a critical role in the evolution of pore structure and mechanical properties of rock, but the underlying mechanisms remain unclear. This study conducts experiments on granite to investigate the effects of temperature gradients on pore structure and rupture propagation under different media, specifically liquid nitrogen and air. The pore structures and granite's transverse relaxation time (T2) are quantified using nuclear magnetic resonance (NMR). Then, Brazilian disk experiments are performed to explore the mechanical properties of granite following heating-holding treatments. Under the same temperature gradient, cooling with liquid nitrogen significantly influences the pore structures and mechanical properties of granite compared to air cooling. As the heat treatment temperature gradient increases, the mass loss rate, volume expansion ratio, and NMR porosity of granite increase, while the density, longitudinal wave velocity, and peak stress decrease. Splitting failure is caused by the constant propagation of the prominent cracks generated from the loading end to the load-bearing end. With increasing temperature in the thermal treatment, the secondary cracks increase and propagate toward the direction of the main cracks under the loading effect. These research results can provide a reference for developing high-temperature reservoirs and the technology for fracture initiation in such reservoirs.</description><subject>Air cooling</subject><subject>Bearing (direction)</subject><subject>Cooling</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Fracture mechanics</subject><subject>Granite</subject><subject>Heat treatment</subject><subject>High temperature</subject><subject>Liquid nitrogen</subject><subject>Longitudinal waves</subject><subject>Magnetic induction</subject><subject>Magnetic properties</subject><subject>Mechanical properties</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Physical properties</subject><subject>Porosity</subject><subject>Propagation velocity</subject><subject>Relaxation time</subject><subject>Reservoirs</subject><subject>Rock properties</subject><subject>Stress propagation</subject><subject>Temperature effects</subject><subject>Wave propagation</subject><subject>Wave velocity</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKsL_0HAlcLUZDLJZNwV8QUFN-o2ZDI3bUo7GZMU7b83faxd3QffOfdyELqmZEKJYPd8QsqK1FyeoBElsilqIcTprq9JIQSj5-gixiUhhDWlGKH0pYPTyfk-Ym_xsNhGZ_QK677DazAL3e_HIfgBQnKwp-YhrxPgH5cWuHPWQoA-YeP9yvVznALotM6b-ICnPYbfLHW7ORvFtOm2l-jM6lWEq2Mdo8_np4_H12L2_vL2OJ0VhsoyFQ1QBh3Qsi2lBNDaVMbWLS8ZE9KKqqtbzXgrKasYJ8BYbcFySamsKCWlZGN0c_DN739vICa19JvQ55OKZVHDc04iU7cHygQfYwCrhvyuDltFidqFqrg6hprZuwMbjUv72P6B_wAGpngT</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Long, Kun</creator><creator>Wu, Yeqiu</creator><creator>Zhang, Ruijie</creator><creator>Chen, Ziqi</creator><creator>Yang, Hongyun</creator><creator>Cheng, Yugang</creator><creator>Wu, Yang</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0001-0939-9850</orcidid><orcidid>https://orcid.org/0009-0007-1984-0391</orcidid></search><sort><creationdate>202412</creationdate><title>Variations of physical and mechanical properties of granite with different cooling treatments: An experimental study</title><author>Long, Kun ; Wu, Yeqiu ; Zhang, Ruijie ; Chen, Ziqi ; Yang, Hongyun ; Cheng, Yugang ; Wu, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-9e13ede12b288eeaac4cf7b523368f64d7ba35b8134350e337fef581184110283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air cooling</topic><topic>Bearing (direction)</topic><topic>Cooling</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Fracture mechanics</topic><topic>Granite</topic><topic>Heat treatment</topic><topic>High temperature</topic><topic>Liquid nitrogen</topic><topic>Longitudinal waves</topic><topic>Magnetic induction</topic><topic>Magnetic properties</topic><topic>Mechanical properties</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Physical properties</topic><topic>Porosity</topic><topic>Propagation velocity</topic><topic>Relaxation time</topic><topic>Reservoirs</topic><topic>Rock properties</topic><topic>Stress propagation</topic><topic>Temperature effects</topic><topic>Wave propagation</topic><topic>Wave velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Kun</creatorcontrib><creatorcontrib>Wu, Yeqiu</creatorcontrib><creatorcontrib>Zhang, Ruijie</creatorcontrib><creatorcontrib>Chen, Ziqi</creatorcontrib><creatorcontrib>Yang, Hongyun</creatorcontrib><creatorcontrib>Cheng, Yugang</creatorcontrib><creatorcontrib>Wu, Yang</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Kun</au><au>Wu, Yeqiu</au><au>Zhang, Ruijie</au><au>Chen, Ziqi</au><au>Yang, Hongyun</au><au>Cheng, Yugang</au><au>Wu, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variations of physical and mechanical properties of granite with different cooling treatments: An experimental study</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-12</date><risdate>2024</risdate><volume>36</volume><issue>12</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The temperature gradient plays a critical role in the evolution of pore structure and mechanical properties of rock, but the underlying mechanisms remain unclear. This study conducts experiments on granite to investigate the effects of temperature gradients on pore structure and rupture propagation under different media, specifically liquid nitrogen and air. The pore structures and granite's transverse relaxation time (T2) are quantified using nuclear magnetic resonance (NMR). Then, Brazilian disk experiments are performed to explore the mechanical properties of granite following heating-holding treatments. Under the same temperature gradient, cooling with liquid nitrogen significantly influences the pore structures and mechanical properties of granite compared to air cooling. As the heat treatment temperature gradient increases, the mass loss rate, volume expansion ratio, and NMR porosity of granite increase, while the density, longitudinal wave velocity, and peak stress decrease. Splitting failure is caused by the constant propagation of the prominent cracks generated from the loading end to the load-bearing end. With increasing temperature in the thermal treatment, the secondary cracks increase and propagate toward the direction of the main cracks under the loading effect. These research results can provide a reference for developing high-temperature reservoirs and the technology for fracture initiation in such reservoirs.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0240758</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0001-0939-9850</orcidid><orcidid>https://orcid.org/0009-0007-1984-0391</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2024-12, Vol.36 (12)
issn 1070-6631
1089-7666
language eng
recordid cdi_scitation_primary_10_1063_5_0240758
source AIP Journals Complete
subjects Air cooling
Bearing (direction)
Cooling
Crack initiation
Crack propagation
Fracture mechanics
Granite
Heat treatment
High temperature
Liquid nitrogen
Longitudinal waves
Magnetic induction
Magnetic properties
Mechanical properties
NMR
Nuclear magnetic resonance
Physical properties
Porosity
Propagation velocity
Relaxation time
Reservoirs
Rock properties
Stress propagation
Temperature effects
Wave propagation
Wave velocity
title Variations of physical and mechanical properties of granite with different cooling treatments: An experimental study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A09%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variations%20of%20physical%20and%20mechanical%20properties%20of%20granite%20with%20different%20cooling%20treatments:%20An%20experimental%20study&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Long,%20Kun&rft.date=2024-12&rft.volume=36&rft.issue=12&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0240758&rft_dat=%3Cproquest_scita%3E3134957586%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3134957586&rft_id=info:pmid/&rfr_iscdi=true