Variations of physical and mechanical properties of granite with different cooling treatments: An experimental study
The temperature gradient plays a critical role in the evolution of pore structure and mechanical properties of rock, but the underlying mechanisms remain unclear. This study conducts experiments on granite to investigate the effects of temperature gradients on pore structure and rupture propagation...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2024-12, Vol.36 (12) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 36 |
creator | Long, Kun Wu, Yeqiu Zhang, Ruijie Chen, Ziqi Yang, Hongyun Cheng, Yugang Wu, Yang |
description | The temperature gradient plays a critical role in the evolution of pore structure and mechanical properties of rock, but the underlying mechanisms remain unclear. This study conducts experiments on granite to investigate the effects of temperature gradients on pore structure and rupture propagation under different media, specifically liquid nitrogen and air. The pore structures and granite's transverse relaxation time (T2) are quantified using nuclear magnetic resonance (NMR). Then, Brazilian disk experiments are performed to explore the mechanical properties of granite following heating-holding treatments. Under the same temperature gradient, cooling with liquid nitrogen significantly influences the pore structures and mechanical properties of granite compared to air cooling. As the heat treatment temperature gradient increases, the mass loss rate, volume expansion ratio, and NMR porosity of granite increase, while the density, longitudinal wave velocity, and peak stress decrease. Splitting failure is caused by the constant propagation of the prominent cracks generated from the loading end to the load-bearing end. With increasing temperature in the thermal treatment, the secondary cracks increase and propagate toward the direction of the main cracks under the loading effect. These research results can provide a reference for developing high-temperature reservoirs and the technology for fracture initiation in such reservoirs. |
doi_str_mv | 10.1063/5.0240758 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0240758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3134957586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-9e13ede12b288eeaac4cf7b523368f64d7ba35b8134350e337fef581184110283</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKsL_0HAlcLUZDLJZNwV8QUFN-o2ZDI3bUo7GZMU7b83faxd3QffOfdyELqmZEKJYPd8QsqK1FyeoBElsilqIcTprq9JIQSj5-gixiUhhDWlGKH0pYPTyfk-Ym_xsNhGZ_QK677DazAL3e_HIfgBQnKwp-YhrxPgH5cWuHPWQoA-YeP9yvVznALotM6b-ICnPYbfLHW7ORvFtOm2l-jM6lWEq2Mdo8_np4_H12L2_vL2OJ0VhsoyFQ1QBh3Qsi2lBNDaVMbWLS8ZE9KKqqtbzXgrKasYJ8BYbcFySamsKCWlZGN0c_DN739vICa19JvQ55OKZVHDc04iU7cHygQfYwCrhvyuDltFidqFqrg6hprZuwMbjUv72P6B_wAGpngT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3134957586</pqid></control><display><type>article</type><title>Variations of physical and mechanical properties of granite with different cooling treatments: An experimental study</title><source>AIP Journals Complete</source><creator>Long, Kun ; Wu, Yeqiu ; Zhang, Ruijie ; Chen, Ziqi ; Yang, Hongyun ; Cheng, Yugang ; Wu, Yang</creator><creatorcontrib>Long, Kun ; Wu, Yeqiu ; Zhang, Ruijie ; Chen, Ziqi ; Yang, Hongyun ; Cheng, Yugang ; Wu, Yang</creatorcontrib><description>The temperature gradient plays a critical role in the evolution of pore structure and mechanical properties of rock, but the underlying mechanisms remain unclear. This study conducts experiments on granite to investigate the effects of temperature gradients on pore structure and rupture propagation under different media, specifically liquid nitrogen and air. The pore structures and granite's transverse relaxation time (T2) are quantified using nuclear magnetic resonance (NMR). Then, Brazilian disk experiments are performed to explore the mechanical properties of granite following heating-holding treatments. Under the same temperature gradient, cooling with liquid nitrogen significantly influences the pore structures and mechanical properties of granite compared to air cooling. As the heat treatment temperature gradient increases, the mass loss rate, volume expansion ratio, and NMR porosity of granite increase, while the density, longitudinal wave velocity, and peak stress decrease. Splitting failure is caused by the constant propagation of the prominent cracks generated from the loading end to the load-bearing end. With increasing temperature in the thermal treatment, the secondary cracks increase and propagate toward the direction of the main cracks under the loading effect. These research results can provide a reference for developing high-temperature reservoirs and the technology for fracture initiation in such reservoirs.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0240758</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Air cooling ; Bearing (direction) ; Cooling ; Crack initiation ; Crack propagation ; Fracture mechanics ; Granite ; Heat treatment ; High temperature ; Liquid nitrogen ; Longitudinal waves ; Magnetic induction ; Magnetic properties ; Mechanical properties ; NMR ; Nuclear magnetic resonance ; Physical properties ; Porosity ; Propagation velocity ; Relaxation time ; Reservoirs ; Rock properties ; Stress propagation ; Temperature effects ; Wave propagation ; Wave velocity</subject><ispartof>Physics of fluids (1994), 2024-12, Vol.36 (12)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-9e13ede12b288eeaac4cf7b523368f64d7ba35b8134350e337fef581184110283</cites><orcidid>0009-0001-0939-9850 ; 0009-0007-1984-0391</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Long, Kun</creatorcontrib><creatorcontrib>Wu, Yeqiu</creatorcontrib><creatorcontrib>Zhang, Ruijie</creatorcontrib><creatorcontrib>Chen, Ziqi</creatorcontrib><creatorcontrib>Yang, Hongyun</creatorcontrib><creatorcontrib>Cheng, Yugang</creatorcontrib><creatorcontrib>Wu, Yang</creatorcontrib><title>Variations of physical and mechanical properties of granite with different cooling treatments: An experimental study</title><title>Physics of fluids (1994)</title><description>The temperature gradient plays a critical role in the evolution of pore structure and mechanical properties of rock, but the underlying mechanisms remain unclear. This study conducts experiments on granite to investigate the effects of temperature gradients on pore structure and rupture propagation under different media, specifically liquid nitrogen and air. The pore structures and granite's transverse relaxation time (T2) are quantified using nuclear magnetic resonance (NMR). Then, Brazilian disk experiments are performed to explore the mechanical properties of granite following heating-holding treatments. Under the same temperature gradient, cooling with liquid nitrogen significantly influences the pore structures and mechanical properties of granite compared to air cooling. As the heat treatment temperature gradient increases, the mass loss rate, volume expansion ratio, and NMR porosity of granite increase, while the density, longitudinal wave velocity, and peak stress decrease. Splitting failure is caused by the constant propagation of the prominent cracks generated from the loading end to the load-bearing end. With increasing temperature in the thermal treatment, the secondary cracks increase and propagate toward the direction of the main cracks under the loading effect. These research results can provide a reference for developing high-temperature reservoirs and the technology for fracture initiation in such reservoirs.</description><subject>Air cooling</subject><subject>Bearing (direction)</subject><subject>Cooling</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Fracture mechanics</subject><subject>Granite</subject><subject>Heat treatment</subject><subject>High temperature</subject><subject>Liquid nitrogen</subject><subject>Longitudinal waves</subject><subject>Magnetic induction</subject><subject>Magnetic properties</subject><subject>Mechanical properties</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Physical properties</subject><subject>Porosity</subject><subject>Propagation velocity</subject><subject>Relaxation time</subject><subject>Reservoirs</subject><subject>Rock properties</subject><subject>Stress propagation</subject><subject>Temperature effects</subject><subject>Wave propagation</subject><subject>Wave velocity</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKsL_0HAlcLUZDLJZNwV8QUFN-o2ZDI3bUo7GZMU7b83faxd3QffOfdyELqmZEKJYPd8QsqK1FyeoBElsilqIcTprq9JIQSj5-gixiUhhDWlGKH0pYPTyfk-Ym_xsNhGZ_QK677DazAL3e_HIfgBQnKwp-YhrxPgH5cWuHPWQoA-YeP9yvVznALotM6b-ICnPYbfLHW7ORvFtOm2l-jM6lWEq2Mdo8_np4_H12L2_vL2OJ0VhsoyFQ1QBh3Qsi2lBNDaVMbWLS8ZE9KKqqtbzXgrKasYJ8BYbcFySamsKCWlZGN0c_DN739vICa19JvQ55OKZVHDc04iU7cHygQfYwCrhvyuDltFidqFqrg6hprZuwMbjUv72P6B_wAGpngT</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Long, Kun</creator><creator>Wu, Yeqiu</creator><creator>Zhang, Ruijie</creator><creator>Chen, Ziqi</creator><creator>Yang, Hongyun</creator><creator>Cheng, Yugang</creator><creator>Wu, Yang</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0001-0939-9850</orcidid><orcidid>https://orcid.org/0009-0007-1984-0391</orcidid></search><sort><creationdate>202412</creationdate><title>Variations of physical and mechanical properties of granite with different cooling treatments: An experimental study</title><author>Long, Kun ; Wu, Yeqiu ; Zhang, Ruijie ; Chen, Ziqi ; Yang, Hongyun ; Cheng, Yugang ; Wu, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-9e13ede12b288eeaac4cf7b523368f64d7ba35b8134350e337fef581184110283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air cooling</topic><topic>Bearing (direction)</topic><topic>Cooling</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Fracture mechanics</topic><topic>Granite</topic><topic>Heat treatment</topic><topic>High temperature</topic><topic>Liquid nitrogen</topic><topic>Longitudinal waves</topic><topic>Magnetic induction</topic><topic>Magnetic properties</topic><topic>Mechanical properties</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Physical properties</topic><topic>Porosity</topic><topic>Propagation velocity</topic><topic>Relaxation time</topic><topic>Reservoirs</topic><topic>Rock properties</topic><topic>Stress propagation</topic><topic>Temperature effects</topic><topic>Wave propagation</topic><topic>Wave velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Kun</creatorcontrib><creatorcontrib>Wu, Yeqiu</creatorcontrib><creatorcontrib>Zhang, Ruijie</creatorcontrib><creatorcontrib>Chen, Ziqi</creatorcontrib><creatorcontrib>Yang, Hongyun</creatorcontrib><creatorcontrib>Cheng, Yugang</creatorcontrib><creatorcontrib>Wu, Yang</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Kun</au><au>Wu, Yeqiu</au><au>Zhang, Ruijie</au><au>Chen, Ziqi</au><au>Yang, Hongyun</au><au>Cheng, Yugang</au><au>Wu, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variations of physical and mechanical properties of granite with different cooling treatments: An experimental study</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-12</date><risdate>2024</risdate><volume>36</volume><issue>12</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The temperature gradient plays a critical role in the evolution of pore structure and mechanical properties of rock, but the underlying mechanisms remain unclear. This study conducts experiments on granite to investigate the effects of temperature gradients on pore structure and rupture propagation under different media, specifically liquid nitrogen and air. The pore structures and granite's transverse relaxation time (T2) are quantified using nuclear magnetic resonance (NMR). Then, Brazilian disk experiments are performed to explore the mechanical properties of granite following heating-holding treatments. Under the same temperature gradient, cooling with liquid nitrogen significantly influences the pore structures and mechanical properties of granite compared to air cooling. As the heat treatment temperature gradient increases, the mass loss rate, volume expansion ratio, and NMR porosity of granite increase, while the density, longitudinal wave velocity, and peak stress decrease. Splitting failure is caused by the constant propagation of the prominent cracks generated from the loading end to the load-bearing end. With increasing temperature in the thermal treatment, the secondary cracks increase and propagate toward the direction of the main cracks under the loading effect. These research results can provide a reference for developing high-temperature reservoirs and the technology for fracture initiation in such reservoirs.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0240758</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0001-0939-9850</orcidid><orcidid>https://orcid.org/0009-0007-1984-0391</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2024-12, Vol.36 (12) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0240758 |
source | AIP Journals Complete |
subjects | Air cooling Bearing (direction) Cooling Crack initiation Crack propagation Fracture mechanics Granite Heat treatment High temperature Liquid nitrogen Longitudinal waves Magnetic induction Magnetic properties Mechanical properties NMR Nuclear magnetic resonance Physical properties Porosity Propagation velocity Relaxation time Reservoirs Rock properties Stress propagation Temperature effects Wave propagation Wave velocity |
title | Variations of physical and mechanical properties of granite with different cooling treatments: An experimental study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A09%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variations%20of%20physical%20and%20mechanical%20properties%20of%20granite%20with%20different%20cooling%20treatments:%20An%20experimental%20study&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Long,%20Kun&rft.date=2024-12&rft.volume=36&rft.issue=12&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0240758&rft_dat=%3Cproquest_scita%3E3134957586%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3134957586&rft_id=info:pmid/&rfr_iscdi=true |