Predicting air quality using intelligent techniques

Air pollution is the major concern which not only impacts the environment but also all the inhabitants of earth. Inhaling the detrimental air may lead to several diseases or even death. So, it culminates in the need of continuous monitoring of pollution levels of various pollutants such as SO2, O3,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pimpalshende, Anjusha, Suresh, Chalumuru, Singh, Preety
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3214
creator Pimpalshende, Anjusha
Suresh, Chalumuru
Singh, Preety
description Air pollution is the major concern which not only impacts the environment but also all the inhabitants of earth. Inhaling the detrimental air may lead to several diseases or even death. So, it culminates in the need of continuous monitoring of pollution levels of various pollutants such as SO2, O3, NO2, CO (PM10 and PM2.5). Proposed work not only finds patterns in the previous data but also be able to alert by predicting the concentration of these pollutants in the near future. Results show how a time series problem can be converted into a supervised problem and contrasted their performance. Comparative analysis done using Long short term memory(LSTM) with auto regressive integrated moving average (ARIMA) to predict pollutant and results proved that LSTM is a better choice.
doi_str_mv 10.1063/5.0239156
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0239156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123897093</sourcerecordid><originalsourceid>FETCH-LOGICAL-p636-234a2134eeeeeb9992c0d7d80572dba212286de09af3d59bea47812b6a9624b53</originalsourceid><addsrcrecordid>eNotUM1KAzEYDKLgWj34BgvehK1JvvxsjlK0CgU99OAtZDdpTVmz2yR76Nu7SzuXgZlhBgahR4KXBAt44UtMQREurlBBOCeVFERcowJjxSrK4OcW3aV0wJgqKesCwXd01rfZh31pfCyPo-l8PpVjmhUfsus6v3chl9m1v8EfR5fu0c3OdMk9XHiBtu9v29VHtflaf65eN9UgQFQUmKEEmJvRKKVoi620NeaS2mayKK2FdViZHViuGmeYrAlthFGCsobDAj2da4fYz7NZH_oxhmlRA6FQK4kVTKnncyq1Ppvs-6CH6P9MPGmC9fyJ5vryCfwDpO1Sow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3123897093</pqid></control><display><type>conference_proceeding</type><title>Predicting air quality using intelligent techniques</title><source>AIP Journals Complete</source><creator>Pimpalshende, Anjusha ; Suresh, Chalumuru ; Singh, Preety</creator><contributor>Ridhorkar, Sonali ; Mandavgade, Nitin K.</contributor><creatorcontrib>Pimpalshende, Anjusha ; Suresh, Chalumuru ; Singh, Preety ; Ridhorkar, Sonali ; Mandavgade, Nitin K.</creatorcontrib><description>Air pollution is the major concern which not only impacts the environment but also all the inhabitants of earth. Inhaling the detrimental air may lead to several diseases or even death. So, it culminates in the need of continuous monitoring of pollution levels of various pollutants such as SO2, O3, NO2, CO (PM10 and PM2.5). Proposed work not only finds patterns in the previous data but also be able to alert by predicting the concentration of these pollutants in the near future. Results show how a time series problem can be converted into a supervised problem and contrasted their performance. Comparative analysis done using Long short term memory(LSTM) with auto regressive integrated moving average (ARIMA) to predict pollutant and results proved that LSTM is a better choice.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0239156</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Air monitoring ; Air pollution ; Air quality ; Nitrogen dioxide ; Pollutants ; Pollution levels ; Pollution monitoring</subject><ispartof>AIP Conference Proceedings, 2024, Vol.3214 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0239156$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Ridhorkar, Sonali</contributor><contributor>Mandavgade, Nitin K.</contributor><creatorcontrib>Pimpalshende, Anjusha</creatorcontrib><creatorcontrib>Suresh, Chalumuru</creatorcontrib><creatorcontrib>Singh, Preety</creatorcontrib><title>Predicting air quality using intelligent techniques</title><title>AIP Conference Proceedings</title><description>Air pollution is the major concern which not only impacts the environment but also all the inhabitants of earth. Inhaling the detrimental air may lead to several diseases or even death. So, it culminates in the need of continuous monitoring of pollution levels of various pollutants such as SO2, O3, NO2, CO (PM10 and PM2.5). Proposed work not only finds patterns in the previous data but also be able to alert by predicting the concentration of these pollutants in the near future. Results show how a time series problem can be converted into a supervised problem and contrasted their performance. Comparative analysis done using Long short term memory(LSTM) with auto regressive integrated moving average (ARIMA) to predict pollutant and results proved that LSTM is a better choice.</description><subject>Air monitoring</subject><subject>Air pollution</subject><subject>Air quality</subject><subject>Nitrogen dioxide</subject><subject>Pollutants</subject><subject>Pollution levels</subject><subject>Pollution monitoring</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotUM1KAzEYDKLgWj34BgvehK1JvvxsjlK0CgU99OAtZDdpTVmz2yR76Nu7SzuXgZlhBgahR4KXBAt44UtMQREurlBBOCeVFERcowJjxSrK4OcW3aV0wJgqKesCwXd01rfZh31pfCyPo-l8PpVjmhUfsus6v3chl9m1v8EfR5fu0c3OdMk9XHiBtu9v29VHtflaf65eN9UgQFQUmKEEmJvRKKVoi620NeaS2mayKK2FdViZHViuGmeYrAlthFGCsobDAj2da4fYz7NZH_oxhmlRA6FQK4kVTKnncyq1Ppvs-6CH6P9MPGmC9fyJ5vryCfwDpO1Sow</recordid><startdate>20241104</startdate><enddate>20241104</enddate><creator>Pimpalshende, Anjusha</creator><creator>Suresh, Chalumuru</creator><creator>Singh, Preety</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20241104</creationdate><title>Predicting air quality using intelligent techniques</title><author>Pimpalshende, Anjusha ; Suresh, Chalumuru ; Singh, Preety</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p636-234a2134eeeeeb9992c0d7d80572dba212286de09af3d59bea47812b6a9624b53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air monitoring</topic><topic>Air pollution</topic><topic>Air quality</topic><topic>Nitrogen dioxide</topic><topic>Pollutants</topic><topic>Pollution levels</topic><topic>Pollution monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pimpalshende, Anjusha</creatorcontrib><creatorcontrib>Suresh, Chalumuru</creatorcontrib><creatorcontrib>Singh, Preety</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pimpalshende, Anjusha</au><au>Suresh, Chalumuru</au><au>Singh, Preety</au><au>Ridhorkar, Sonali</au><au>Mandavgade, Nitin K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Predicting air quality using intelligent techniques</atitle><btitle>AIP Conference Proceedings</btitle><date>2024-11-04</date><risdate>2024</risdate><volume>3214</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Air pollution is the major concern which not only impacts the environment but also all the inhabitants of earth. Inhaling the detrimental air may lead to several diseases or even death. So, it culminates in the need of continuous monitoring of pollution levels of various pollutants such as SO2, O3, NO2, CO (PM10 and PM2.5). Proposed work not only finds patterns in the previous data but also be able to alert by predicting the concentration of these pollutants in the near future. Results show how a time series problem can be converted into a supervised problem and contrasted their performance. Comparative analysis done using Long short term memory(LSTM) with auto regressive integrated moving average (ARIMA) to predict pollutant and results proved that LSTM is a better choice.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0239156</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2024, Vol.3214 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0239156
source AIP Journals Complete
subjects Air monitoring
Air pollution
Air quality
Nitrogen dioxide
Pollutants
Pollution levels
Pollution monitoring
title Predicting air quality using intelligent techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A09%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Predicting%20air%20quality%20using%20intelligent%20techniques&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Pimpalshende,%20Anjusha&rft.date=2024-11-04&rft.volume=3214&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0239156&rft_dat=%3Cproquest_scita%3E3123897093%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123897093&rft_id=info:pmid/&rfr_iscdi=true