Exploring machine learning techniques for enhancing fraud detection
Financial frauds are unethical practices that are employed to obtain financial gain. Financial fraud poses a greater threat and has a negative influence on the financial industry. Financial in-situations are therefore required to enhance their fraud detection systems. Numerous studies employing deep...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 3214 |
creator | Badhiye, Sagarkumar Borkar, Pradnya Dethe, Atharva C. Kashikar, Sharvit N. Gudadhe, Dhairya Thakur, Reena |
description | Financial frauds are unethical practices that are employed to obtain financial gain. Financial fraud poses a greater threat and has a negative influence on the financial industry. Financial in-situations are therefore required to enhance their fraud detection systems. Numerous studies employing deep learning and machine learning have provided answers to the problem in recent years. Solutions based on machine learning have the ability to both identifyfrauds and reduce the likelihood of falling victim to one. The purpose of this work is to present an overview of the existing literature on fraud detection, along with machine learning-based solutions. |
doi_str_mv | 10.1063/5.0239098 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0239098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123897047</sourcerecordid><originalsourceid>FETCH-LOGICAL-p638-60943a7787d34a82a305f49eb56e3fad48250d4c94912a39c8d1c8a7659f30453</originalsourceid><addsrcrecordid>eNotkEtLxDAUhYMoWEcX_oOCO6HjTW-eSxnGBwy4mYW7ENPUZuikNW1B_70tM6sL93yccziE3FNYUxD4xNdQogatLkhGOaeFFFRckgxAs6Jk-HlNbobhAFBqKVVGNtvfvu1SiN_50bomRJ-33qa4PEbvmhh-Jj_kdZdyHxsb3SLUyU5VXvkZGEMXb8lVbdvB353viuxftvvNW7H7eH3fPO-KXqAqxNwA7RwqK2RWlRaB10z7Ly481rZiquRQMaeZprOonaqoU1YKrmsExnFFHk62feqWUqM5dFOKc6JBWqLSEpicqccTNbgw2qWe6VM42vRnKJhlI8PNeSP8B5nwV7I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3123897047</pqid></control><display><type>conference_proceeding</type><title>Exploring machine learning techniques for enhancing fraud detection</title><source>AIP Journals Complete</source><creator>Badhiye, Sagarkumar ; Borkar, Pradnya ; Dethe, Atharva C. ; Kashikar, Sharvit N. ; Gudadhe, Dhairya ; Thakur, Reena</creator><contributor>Ridhorkar, Sonali ; Mandavgade, Nitin K.</contributor><creatorcontrib>Badhiye, Sagarkumar ; Borkar, Pradnya ; Dethe, Atharva C. ; Kashikar, Sharvit N. ; Gudadhe, Dhairya ; Thakur, Reena ; Ridhorkar, Sonali ; Mandavgade, Nitin K.</creatorcontrib><description>Financial frauds are unethical practices that are employed to obtain financial gain. Financial fraud poses a greater threat and has a negative influence on the financial industry. Financial in-situations are therefore required to enhance their fraud detection systems. Numerous studies employing deep learning and machine learning have provided answers to the problem in recent years. Solutions based on machine learning have the ability to both identifyfrauds and reduce the likelihood of falling victim to one. The purpose of this work is to present an overview of the existing literature on fraud detection, along with machine learning-based solutions.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0239098</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Deep learning ; Machine learning</subject><ispartof>AIP Conference Proceedings, 2024, Vol.3214 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0239098$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Ridhorkar, Sonali</contributor><contributor>Mandavgade, Nitin K.</contributor><creatorcontrib>Badhiye, Sagarkumar</creatorcontrib><creatorcontrib>Borkar, Pradnya</creatorcontrib><creatorcontrib>Dethe, Atharva C.</creatorcontrib><creatorcontrib>Kashikar, Sharvit N.</creatorcontrib><creatorcontrib>Gudadhe, Dhairya</creatorcontrib><creatorcontrib>Thakur, Reena</creatorcontrib><title>Exploring machine learning techniques for enhancing fraud detection</title><title>AIP Conference Proceedings</title><description>Financial frauds are unethical practices that are employed to obtain financial gain. Financial fraud poses a greater threat and has a negative influence on the financial industry. Financial in-situations are therefore required to enhance their fraud detection systems. Numerous studies employing deep learning and machine learning have provided answers to the problem in recent years. Solutions based on machine learning have the ability to both identifyfrauds and reduce the likelihood of falling victim to one. The purpose of this work is to present an overview of the existing literature on fraud detection, along with machine learning-based solutions.</description><subject>Deep learning</subject><subject>Machine learning</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEtLxDAUhYMoWEcX_oOCO6HjTW-eSxnGBwy4mYW7ENPUZuikNW1B_70tM6sL93yccziE3FNYUxD4xNdQogatLkhGOaeFFFRckgxAs6Jk-HlNbobhAFBqKVVGNtvfvu1SiN_50bomRJ-33qa4PEbvmhh-Jj_kdZdyHxsb3SLUyU5VXvkZGEMXb8lVbdvB353viuxftvvNW7H7eH3fPO-KXqAqxNwA7RwqK2RWlRaB10z7Ly481rZiquRQMaeZprOonaqoU1YKrmsExnFFHk62feqWUqM5dFOKc6JBWqLSEpicqccTNbgw2qWe6VM42vRnKJhlI8PNeSP8B5nwV7I</recordid><startdate>20241104</startdate><enddate>20241104</enddate><creator>Badhiye, Sagarkumar</creator><creator>Borkar, Pradnya</creator><creator>Dethe, Atharva C.</creator><creator>Kashikar, Sharvit N.</creator><creator>Gudadhe, Dhairya</creator><creator>Thakur, Reena</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20241104</creationdate><title>Exploring machine learning techniques for enhancing fraud detection</title><author>Badhiye, Sagarkumar ; Borkar, Pradnya ; Dethe, Atharva C. ; Kashikar, Sharvit N. ; Gudadhe, Dhairya ; Thakur, Reena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p638-60943a7787d34a82a305f49eb56e3fad48250d4c94912a39c8d1c8a7659f30453</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deep learning</topic><topic>Machine learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badhiye, Sagarkumar</creatorcontrib><creatorcontrib>Borkar, Pradnya</creatorcontrib><creatorcontrib>Dethe, Atharva C.</creatorcontrib><creatorcontrib>Kashikar, Sharvit N.</creatorcontrib><creatorcontrib>Gudadhe, Dhairya</creatorcontrib><creatorcontrib>Thakur, Reena</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Badhiye, Sagarkumar</au><au>Borkar, Pradnya</au><au>Dethe, Atharva C.</au><au>Kashikar, Sharvit N.</au><au>Gudadhe, Dhairya</au><au>Thakur, Reena</au><au>Ridhorkar, Sonali</au><au>Mandavgade, Nitin K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Exploring machine learning techniques for enhancing fraud detection</atitle><btitle>AIP Conference Proceedings</btitle><date>2024-11-04</date><risdate>2024</risdate><volume>3214</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Financial frauds are unethical practices that are employed to obtain financial gain. Financial fraud poses a greater threat and has a negative influence on the financial industry. Financial in-situations are therefore required to enhance their fraud detection systems. Numerous studies employing deep learning and machine learning have provided answers to the problem in recent years. Solutions based on machine learning have the ability to both identifyfrauds and reduce the likelihood of falling victim to one. The purpose of this work is to present an overview of the existing literature on fraud detection, along with machine learning-based solutions.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0239098</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2024, Vol.3214 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0239098 |
source | AIP Journals Complete |
subjects | Deep learning Machine learning |
title | Exploring machine learning techniques for enhancing fraud detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A56%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Exploring%20machine%20learning%20techniques%20for%20enhancing%20fraud%20detection&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Badhiye,%20Sagarkumar&rft.date=2024-11-04&rft.volume=3214&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0239098&rft_dat=%3Cproquest_scita%3E3123897047%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123897047&rft_id=info:pmid/&rfr_iscdi=true |