Exploring machine learning techniques for enhancing fraud detection

Financial frauds are unethical practices that are employed to obtain financial gain. Financial fraud poses a greater threat and has a negative influence on the financial industry. Financial in-situations are therefore required to enhance their fraud detection systems. Numerous studies employing deep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Badhiye, Sagarkumar, Borkar, Pradnya, Dethe, Atharva C., Kashikar, Sharvit N., Gudadhe, Dhairya, Thakur, Reena
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3214
creator Badhiye, Sagarkumar
Borkar, Pradnya
Dethe, Atharva C.
Kashikar, Sharvit N.
Gudadhe, Dhairya
Thakur, Reena
description Financial frauds are unethical practices that are employed to obtain financial gain. Financial fraud poses a greater threat and has a negative influence on the financial industry. Financial in-situations are therefore required to enhance their fraud detection systems. Numerous studies employing deep learning and machine learning have provided answers to the problem in recent years. Solutions based on machine learning have the ability to both identifyfrauds and reduce the likelihood of falling victim to one. The purpose of this work is to present an overview of the existing literature on fraud detection, along with machine learning-based solutions.
doi_str_mv 10.1063/5.0239098
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0239098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123897047</sourcerecordid><originalsourceid>FETCH-LOGICAL-p638-60943a7787d34a82a305f49eb56e3fad48250d4c94912a39c8d1c8a7659f30453</originalsourceid><addsrcrecordid>eNotkEtLxDAUhYMoWEcX_oOCO6HjTW-eSxnGBwy4mYW7ENPUZuikNW1B_70tM6sL93yccziE3FNYUxD4xNdQogatLkhGOaeFFFRckgxAs6Jk-HlNbobhAFBqKVVGNtvfvu1SiN_50bomRJ-33qa4PEbvmhh-Jj_kdZdyHxsb3SLUyU5VXvkZGEMXb8lVbdvB353viuxftvvNW7H7eH3fPO-KXqAqxNwA7RwqK2RWlRaB10z7Ly481rZiquRQMaeZprOonaqoU1YKrmsExnFFHk62feqWUqM5dFOKc6JBWqLSEpicqccTNbgw2qWe6VM42vRnKJhlI8PNeSP8B5nwV7I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3123897047</pqid></control><display><type>conference_proceeding</type><title>Exploring machine learning techniques for enhancing fraud detection</title><source>AIP Journals Complete</source><creator>Badhiye, Sagarkumar ; Borkar, Pradnya ; Dethe, Atharva C. ; Kashikar, Sharvit N. ; Gudadhe, Dhairya ; Thakur, Reena</creator><contributor>Ridhorkar, Sonali ; Mandavgade, Nitin K.</contributor><creatorcontrib>Badhiye, Sagarkumar ; Borkar, Pradnya ; Dethe, Atharva C. ; Kashikar, Sharvit N. ; Gudadhe, Dhairya ; Thakur, Reena ; Ridhorkar, Sonali ; Mandavgade, Nitin K.</creatorcontrib><description>Financial frauds are unethical practices that are employed to obtain financial gain. Financial fraud poses a greater threat and has a negative influence on the financial industry. Financial in-situations are therefore required to enhance their fraud detection systems. Numerous studies employing deep learning and machine learning have provided answers to the problem in recent years. Solutions based on machine learning have the ability to both identifyfrauds and reduce the likelihood of falling victim to one. The purpose of this work is to present an overview of the existing literature on fraud detection, along with machine learning-based solutions.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0239098</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Deep learning ; Machine learning</subject><ispartof>AIP Conference Proceedings, 2024, Vol.3214 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0239098$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Ridhorkar, Sonali</contributor><contributor>Mandavgade, Nitin K.</contributor><creatorcontrib>Badhiye, Sagarkumar</creatorcontrib><creatorcontrib>Borkar, Pradnya</creatorcontrib><creatorcontrib>Dethe, Atharva C.</creatorcontrib><creatorcontrib>Kashikar, Sharvit N.</creatorcontrib><creatorcontrib>Gudadhe, Dhairya</creatorcontrib><creatorcontrib>Thakur, Reena</creatorcontrib><title>Exploring machine learning techniques for enhancing fraud detection</title><title>AIP Conference Proceedings</title><description>Financial frauds are unethical practices that are employed to obtain financial gain. Financial fraud poses a greater threat and has a negative influence on the financial industry. Financial in-situations are therefore required to enhance their fraud detection systems. Numerous studies employing deep learning and machine learning have provided answers to the problem in recent years. Solutions based on machine learning have the ability to both identifyfrauds and reduce the likelihood of falling victim to one. The purpose of this work is to present an overview of the existing literature on fraud detection, along with machine learning-based solutions.</description><subject>Deep learning</subject><subject>Machine learning</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEtLxDAUhYMoWEcX_oOCO6HjTW-eSxnGBwy4mYW7ENPUZuikNW1B_70tM6sL93yccziE3FNYUxD4xNdQogatLkhGOaeFFFRckgxAs6Jk-HlNbobhAFBqKVVGNtvfvu1SiN_50bomRJ-33qa4PEbvmhh-Jj_kdZdyHxsb3SLUyU5VXvkZGEMXb8lVbdvB353viuxftvvNW7H7eH3fPO-KXqAqxNwA7RwqK2RWlRaB10z7Ly481rZiquRQMaeZprOonaqoU1YKrmsExnFFHk62feqWUqM5dFOKc6JBWqLSEpicqccTNbgw2qWe6VM42vRnKJhlI8PNeSP8B5nwV7I</recordid><startdate>20241104</startdate><enddate>20241104</enddate><creator>Badhiye, Sagarkumar</creator><creator>Borkar, Pradnya</creator><creator>Dethe, Atharva C.</creator><creator>Kashikar, Sharvit N.</creator><creator>Gudadhe, Dhairya</creator><creator>Thakur, Reena</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20241104</creationdate><title>Exploring machine learning techniques for enhancing fraud detection</title><author>Badhiye, Sagarkumar ; Borkar, Pradnya ; Dethe, Atharva C. ; Kashikar, Sharvit N. ; Gudadhe, Dhairya ; Thakur, Reena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p638-60943a7787d34a82a305f49eb56e3fad48250d4c94912a39c8d1c8a7659f30453</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deep learning</topic><topic>Machine learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badhiye, Sagarkumar</creatorcontrib><creatorcontrib>Borkar, Pradnya</creatorcontrib><creatorcontrib>Dethe, Atharva C.</creatorcontrib><creatorcontrib>Kashikar, Sharvit N.</creatorcontrib><creatorcontrib>Gudadhe, Dhairya</creatorcontrib><creatorcontrib>Thakur, Reena</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Badhiye, Sagarkumar</au><au>Borkar, Pradnya</au><au>Dethe, Atharva C.</au><au>Kashikar, Sharvit N.</au><au>Gudadhe, Dhairya</au><au>Thakur, Reena</au><au>Ridhorkar, Sonali</au><au>Mandavgade, Nitin K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Exploring machine learning techniques for enhancing fraud detection</atitle><btitle>AIP Conference Proceedings</btitle><date>2024-11-04</date><risdate>2024</risdate><volume>3214</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Financial frauds are unethical practices that are employed to obtain financial gain. Financial fraud poses a greater threat and has a negative influence on the financial industry. Financial in-situations are therefore required to enhance their fraud detection systems. Numerous studies employing deep learning and machine learning have provided answers to the problem in recent years. Solutions based on machine learning have the ability to both identifyfrauds and reduce the likelihood of falling victim to one. The purpose of this work is to present an overview of the existing literature on fraud detection, along with machine learning-based solutions.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0239098</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2024, Vol.3214 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0239098
source AIP Journals Complete
subjects Deep learning
Machine learning
title Exploring machine learning techniques for enhancing fraud detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A56%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Exploring%20machine%20learning%20techniques%20for%20enhancing%20fraud%20detection&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Badhiye,%20Sagarkumar&rft.date=2024-11-04&rft.volume=3214&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0239098&rft_dat=%3Cproquest_scita%3E3123897047%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123897047&rft_id=info:pmid/&rfr_iscdi=true