Excited states from GW/BSE and Hartree–Fock theory: Effects of polarizability and transition type on accuracy of excited state energies

GW and Bethe–Salpeter equation (BSE) methods are used to calculate energies of excited states of organic molecules in the Quest-3 database [Loos et al., J. Chem. Theory Comput. 16, 1711 (2020)]. The self-energy in the GW approximation is conventionally calculated using the RPA polarizability. Inclus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2024-12, Vol.161 (22)
Hauptverfasser: Waide, David T., Patterson, Charles H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 22
container_start_page
container_title The Journal of chemical physics
container_volume 161
creator Waide, David T.
Patterson, Charles H.
description GW and Bethe–Salpeter equation (BSE) methods are used to calculate energies of excited states of organic molecules in the Quest-3 database [Loos et al., J. Chem. Theory Comput. 16, 1711 (2020)]. The self-energy in the GW approximation is conventionally calculated using the RPA polarizability. Inclusion of a screened electron–hole interaction in the polarizability was recently shown to improve predictions of experimental ionization energies in organic molecules [C. H. Patterson, J. Chem. Theory Comput. 20, 7479 (2024)]. Self-energies from RPA or screened time-dependent Hartree–Fock (TDHF) polarizabilities in the GW/BSE method are used to calculate 141 singlet excited states in Quest-3. Theoretical best estimate excited state energies from the CC3 coupled cluster method and aug-cc-pVTZ basis sets are used to benchmark GW/BSE and CIS calculations using the same molecular geometries and basis sets. Differences between GW/BSE or CIS excited state energies and best estimate values show that there are systematic variations in the accuracies of excited state energies classified as ππ*, nπ*, πR (Rydberg), or nR character. The origin of these variations is the accuracy of self-energies of states of nonbonding vs π bonding character. In particular, N or O lone pair states require large self-energy corrections owing to strong orbital relaxation in the localized hole state, while π states have smaller corrections. Self-energies from a screened TDHF vs RPA polarizability are typically over(under)estimated for nonbonding states, leading to under(over)estimation of energies of excited states of nπ* or nR character.
doi_str_mv 10.1063/5.0236385
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0236385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146608041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1535-1941dc3d10dc84a26d8c9a3c36e5876f722263b70f34e3502b52959fec9f9fe03</originalsourceid><addsrcrecordid>eNp9kT9vFDEQxS0EIkeg4AsgSzQQaZOxvfau6SC6_JEiUQCiXPm8Y3DYW19sr8RS0VLzDfkk8XEXhChoZprfvHl6j5CnDI4ZKHEij4ELJVp5jywYtLpqlIb7ZAHAWaUVqAPyKKVrAGANrx-SA6GVZC1nC_Jj-dX6jD1N2WRM1MWwpucfT968W1Iz9vTCxBwRf33_eRbsF5o_Y4jzK7p0Dm1ONDi6CYOJ_ptZ-cHn-fdRjmZMPvsw0jxvkJZtrJ2isfP2Av9-SXHE-MljekweODMkfLLfh-TD2fL96UV19fb88vT1VWWZFLJiuma9FT2D3ra14apvrTbCCoWybZRrOOdKrBpwokYhga8k11IXu9qVCeKQvNjpbmK4mTDlbu2TxWEwI4YpdYLVSkELNSvo83_Q6zDFsbjbUlzUUjS8UC93lI0hpYiu20S_NnHuGHTbfjrZ7fsp7LO94rRaY_-HvCukAEc7IJWMzDbC_6jdAuhtmEs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142345372</pqid></control><display><type>article</type><title>Excited states from GW/BSE and Hartree–Fock theory: Effects of polarizability and transition type on accuracy of excited state energies</title><source>AIP Journals Complete</source><creator>Waide, David T. ; Patterson, Charles H.</creator><creatorcontrib>Waide, David T. ; Patterson, Charles H.</creatorcontrib><description>GW and Bethe–Salpeter equation (BSE) methods are used to calculate energies of excited states of organic molecules in the Quest-3 database [Loos et al., J. Chem. Theory Comput. 16, 1711 (2020)]. The self-energy in the GW approximation is conventionally calculated using the RPA polarizability. Inclusion of a screened electron–hole interaction in the polarizability was recently shown to improve predictions of experimental ionization energies in organic molecules [C. H. Patterson, J. Chem. Theory Comput. 20, 7479 (2024)]. Self-energies from RPA or screened time-dependent Hartree–Fock (TDHF) polarizabilities in the GW/BSE method are used to calculate 141 singlet excited states in Quest-3. Theoretical best estimate excited state energies from the CC3 coupled cluster method and aug-cc-pVTZ basis sets are used to benchmark GW/BSE and CIS calculations using the same molecular geometries and basis sets. Differences between GW/BSE or CIS excited state energies and best estimate values show that there are systematic variations in the accuracies of excited state energies classified as ππ*, nπ*, πR (Rydberg), or nR character. The origin of these variations is the accuracy of self-energies of states of nonbonding vs π bonding character. In particular, N or O lone pair states require large self-energy corrections owing to strong orbital relaxation in the localized hole state, while π states have smaller corrections. Self-energies from a screened TDHF vs RPA polarizability are typically over(under)estimated for nonbonding states, leading to under(over)estimation of energies of excited states of nπ* or nR character.</description><identifier>ISSN: 0021-9606</identifier><identifier>ISSN: 1089-7690</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0236385</identifier><identifier>PMID: 39651821</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Bonding strength ; Electron-hole interaction ; Excitation ; Hartree approximation ; Organic chemistry</subject><ispartof>The Journal of chemical physics, 2024-12, Vol.161 (22)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1535-1941dc3d10dc84a26d8c9a3c36e5876f722263b70f34e3502b52959fec9f9fe03</cites><orcidid>0000-0003-2187-5642 ; 0000-0002-4363-9539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0236385$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,794,4510,27923,27924,76155</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39651821$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Waide, David T.</creatorcontrib><creatorcontrib>Patterson, Charles H.</creatorcontrib><title>Excited states from GW/BSE and Hartree–Fock theory: Effects of polarizability and transition type on accuracy of excited state energies</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>GW and Bethe–Salpeter equation (BSE) methods are used to calculate energies of excited states of organic molecules in the Quest-3 database [Loos et al., J. Chem. Theory Comput. 16, 1711 (2020)]. The self-energy in the GW approximation is conventionally calculated using the RPA polarizability. Inclusion of a screened electron–hole interaction in the polarizability was recently shown to improve predictions of experimental ionization energies in organic molecules [C. H. Patterson, J. Chem. Theory Comput. 20, 7479 (2024)]. Self-energies from RPA or screened time-dependent Hartree–Fock (TDHF) polarizabilities in the GW/BSE method are used to calculate 141 singlet excited states in Quest-3. Theoretical best estimate excited state energies from the CC3 coupled cluster method and aug-cc-pVTZ basis sets are used to benchmark GW/BSE and CIS calculations using the same molecular geometries and basis sets. Differences between GW/BSE or CIS excited state energies and best estimate values show that there are systematic variations in the accuracies of excited state energies classified as ππ*, nπ*, πR (Rydberg), or nR character. The origin of these variations is the accuracy of self-energies of states of nonbonding vs π bonding character. In particular, N or O lone pair states require large self-energy corrections owing to strong orbital relaxation in the localized hole state, while π states have smaller corrections. Self-energies from a screened TDHF vs RPA polarizability are typically over(under)estimated for nonbonding states, leading to under(over)estimation of energies of excited states of nπ* or nR character.</description><subject>Bonding strength</subject><subject>Electron-hole interaction</subject><subject>Excitation</subject><subject>Hartree approximation</subject><subject>Organic chemistry</subject><issn>0021-9606</issn><issn>1089-7690</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kT9vFDEQxS0EIkeg4AsgSzQQaZOxvfau6SC6_JEiUQCiXPm8Y3DYW19sr8RS0VLzDfkk8XEXhChoZprfvHl6j5CnDI4ZKHEij4ELJVp5jywYtLpqlIb7ZAHAWaUVqAPyKKVrAGANrx-SA6GVZC1nC_Jj-dX6jD1N2WRM1MWwpucfT968W1Iz9vTCxBwRf33_eRbsF5o_Y4jzK7p0Dm1ONDi6CYOJ_ptZ-cHn-fdRjmZMPvsw0jxvkJZtrJ2isfP2Av9-SXHE-MljekweODMkfLLfh-TD2fL96UV19fb88vT1VWWZFLJiuma9FT2D3ra14apvrTbCCoWybZRrOOdKrBpwokYhga8k11IXu9qVCeKQvNjpbmK4mTDlbu2TxWEwI4YpdYLVSkELNSvo83_Q6zDFsbjbUlzUUjS8UC93lI0hpYiu20S_NnHuGHTbfjrZ7fsp7LO94rRaY_-HvCukAEc7IJWMzDbC_6jdAuhtmEs</recordid><startdate>20241214</startdate><enddate>20241214</enddate><creator>Waide, David T.</creator><creator>Patterson, Charles H.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2187-5642</orcidid><orcidid>https://orcid.org/0000-0002-4363-9539</orcidid></search><sort><creationdate>20241214</creationdate><title>Excited states from GW/BSE and Hartree–Fock theory: Effects of polarizability and transition type on accuracy of excited state energies</title><author>Waide, David T. ; Patterson, Charles H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1535-1941dc3d10dc84a26d8c9a3c36e5876f722263b70f34e3502b52959fec9f9fe03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bonding strength</topic><topic>Electron-hole interaction</topic><topic>Excitation</topic><topic>Hartree approximation</topic><topic>Organic chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waide, David T.</creatorcontrib><creatorcontrib>Patterson, Charles H.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Waide, David T.</au><au>Patterson, Charles H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Excited states from GW/BSE and Hartree–Fock theory: Effects of polarizability and transition type on accuracy of excited state energies</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2024-12-14</date><risdate>2024</risdate><volume>161</volume><issue>22</issue><issn>0021-9606</issn><issn>1089-7690</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>GW and Bethe–Salpeter equation (BSE) methods are used to calculate energies of excited states of organic molecules in the Quest-3 database [Loos et al., J. Chem. Theory Comput. 16, 1711 (2020)]. The self-energy in the GW approximation is conventionally calculated using the RPA polarizability. Inclusion of a screened electron–hole interaction in the polarizability was recently shown to improve predictions of experimental ionization energies in organic molecules [C. H. Patterson, J. Chem. Theory Comput. 20, 7479 (2024)]. Self-energies from RPA or screened time-dependent Hartree–Fock (TDHF) polarizabilities in the GW/BSE method are used to calculate 141 singlet excited states in Quest-3. Theoretical best estimate excited state energies from the CC3 coupled cluster method and aug-cc-pVTZ basis sets are used to benchmark GW/BSE and CIS calculations using the same molecular geometries and basis sets. Differences between GW/BSE or CIS excited state energies and best estimate values show that there are systematic variations in the accuracies of excited state energies classified as ππ*, nπ*, πR (Rydberg), or nR character. The origin of these variations is the accuracy of self-energies of states of nonbonding vs π bonding character. In particular, N or O lone pair states require large self-energy corrections owing to strong orbital relaxation in the localized hole state, while π states have smaller corrections. Self-energies from a screened TDHF vs RPA polarizability are typically over(under)estimated for nonbonding states, leading to under(over)estimation of energies of excited states of nπ* or nR character.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>39651821</pmid><doi>10.1063/5.0236385</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2187-5642</orcidid><orcidid>https://orcid.org/0000-0002-4363-9539</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2024-12, Vol.161 (22)
issn 0021-9606
1089-7690
1089-7690
language eng
recordid cdi_scitation_primary_10_1063_5_0236385
source AIP Journals Complete
subjects Bonding strength
Electron-hole interaction
Excitation
Hartree approximation
Organic chemistry
title Excited states from GW/BSE and Hartree–Fock theory: Effects of polarizability and transition type on accuracy of excited state energies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A10%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Excited%20states%20from%20GW/BSE%20and%20Hartree%E2%80%93Fock%20theory:%20Effects%20of%20polarizability%20and%20transition%20type%20on%20accuracy%20of%20excited%20state%20energies&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Waide,%20David%20T.&rft.date=2024-12-14&rft.volume=161&rft.issue=22&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0236385&rft_dat=%3Cproquest_scita%3E3146608041%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3142345372&rft_id=info:pmid/39651821&rfr_iscdi=true