Stochastic optimal allocation of grid-side independent energy storage considering energy storage participating in multi-market trading operation

The integration of large-scale intermittent renewable energy generation into the power grid imposes challenges to the secure and economic operation of the system, and energy storage (ES) can effectively mitigate this problem as a flexible resource. However, the conventional ES allocation is mostly p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2024-10, Vol.14 (10), p.105223-105223-12
Hauptverfasser: Xu, Jiayin, Wang, Xuli, Zhu, Liuzhu, Shen, Yuming, Guo, Wenzhang, Hu, Xudong, Ma, Yinghao, Huang, Rishun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105223-12
container_issue 10
container_start_page 105223
container_title AIP advances
container_volume 14
creator Xu, Jiayin
Wang, Xuli
Zhu, Liuzhu
Shen, Yuming
Guo, Wenzhang
Hu, Xudong
Ma, Yinghao
Huang, Rishun
description The integration of large-scale intermittent renewable energy generation into the power grid imposes challenges to the secure and economic operation of the system, and energy storage (ES) can effectively mitigate this problem as a flexible resource. However, the conventional ES allocation is mostly planned to meet the regulation demands of individual entities, which is likely to result in low utilization of ES and difficult to recover the investment cost. Therefore, a two-stage stochastic optimal allocation model for grid-side independent ES (IES) considering ES participating in the operation of multi-market trading, such as peak-valley arbitrage, frequency regulation, and leasing, is proposed in this paper to improve the comprehensive benefits and utilization rate of ES. The first stage aims to allocate IES and develop a systematic scheduling plan based on the forecast of wind power output and load demand, while the second stage responds to the uncertainty of wind power output by re-dispatching generating units and invoking ES power leased by wind farms. Then, a two-layer loop iterative solution algorithm based on the Benders decomposition is formed to effectively solve the proposed model. Finally, the approach developed in this paper is applied to a modified IEEE RTS-79 test system, and the results verify that it is both feasible and effective.
doi_str_mv 10.1063/5.0234798
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0234798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5e8a02ce33a3405b83ac13f8f6c01dd5</doaj_id><sourcerecordid>3123905953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c248t-1739d3b91ad84e86a47a8dafd8307d18bda3358c3d1b76025b21e3f16c671d5e3</originalsourceid><addsrcrecordid>eNp9kc1q3DAQgE1poSHJoW8g6KkFbyWNZcvHEvIHgRzansVYGrvaei1X0h7yFnnkandDKTlUB0nMfHwz0lTVB8E3grfwRW24hKbr9ZvqTAqla5CyffvP_X11mdKWl9X0guvmrHr-loP9iSl7y8Ka_Q5nhvMcLGYfFhZGNkXv6uQdMb84WqlsS2a0UJyeWMoh4kTMhuWARL9Mr1MrxiL3axGWpF_Ybj9nX-8w_qLMckR3iIeV4rHkRfVuxDnR5ct5Xv24uf5-dVc_PN7eX319qK1sdK5FB72DoRfodEO6xaZD7XB0GnjnhB4cAihtwYmha7lUgxQEo2ht2wmnCM6r-5PXBdyaNZaXxycT0JtjIMTJHBufySjSyKUlAISGq0EDWgGjHlvLhXOquD6eXGsMv_eUstmGfVxK-waEhJ6rXkGhPp0oG0NKkca_VQU3h_kZZV7mV9jPJzZZn4__8h_4D0FlnTo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123905953</pqid></control><display><type>article</type><title>Stochastic optimal allocation of grid-side independent energy storage considering energy storage participating in multi-market trading operation</title><source>Directory of Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Xu, Jiayin ; Wang, Xuli ; Zhu, Liuzhu ; Shen, Yuming ; Guo, Wenzhang ; Hu, Xudong ; Ma, Yinghao ; Huang, Rishun</creator><creatorcontrib>Xu, Jiayin ; Wang, Xuli ; Zhu, Liuzhu ; Shen, Yuming ; Guo, Wenzhang ; Hu, Xudong ; Ma, Yinghao ; Huang, Rishun</creatorcontrib><description>The integration of large-scale intermittent renewable energy generation into the power grid imposes challenges to the secure and economic operation of the system, and energy storage (ES) can effectively mitigate this problem as a flexible resource. However, the conventional ES allocation is mostly planned to meet the regulation demands of individual entities, which is likely to result in low utilization of ES and difficult to recover the investment cost. Therefore, a two-stage stochastic optimal allocation model for grid-side independent ES (IES) considering ES participating in the operation of multi-market trading, such as peak-valley arbitrage, frequency regulation, and leasing, is proposed in this paper to improve the comprehensive benefits and utilization rate of ES. The first stage aims to allocate IES and develop a systematic scheduling plan based on the forecast of wind power output and load demand, while the second stage responds to the uncertainty of wind power output by re-dispatching generating units and invoking ES power leased by wind farms. Then, a two-layer loop iterative solution algorithm based on the Benders decomposition is formed to effectively solve the proposed model. Finally, the approach developed in this paper is applied to a modified IEEE RTS-79 test system, and the results verify that it is both feasible and effective.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0234798</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Alternative energy sources ; Benders decomposition ; Energy storage ; Iterative solution ; Power dispatch ; Wind power</subject><ispartof>AIP advances, 2024-10, Vol.14 (10), p.105223-105223-12</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c248t-1739d3b91ad84e86a47a8dafd8307d18bda3358c3d1b76025b21e3f16c671d5e3</cites><orcidid>0009-0008-6154-3574 ; 0000-0002-9984-2229</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,27901,27902</link.rule.ids></links><search><creatorcontrib>Xu, Jiayin</creatorcontrib><creatorcontrib>Wang, Xuli</creatorcontrib><creatorcontrib>Zhu, Liuzhu</creatorcontrib><creatorcontrib>Shen, Yuming</creatorcontrib><creatorcontrib>Guo, Wenzhang</creatorcontrib><creatorcontrib>Hu, Xudong</creatorcontrib><creatorcontrib>Ma, Yinghao</creatorcontrib><creatorcontrib>Huang, Rishun</creatorcontrib><title>Stochastic optimal allocation of grid-side independent energy storage considering energy storage participating in multi-market trading operation</title><title>AIP advances</title><description>The integration of large-scale intermittent renewable energy generation into the power grid imposes challenges to the secure and economic operation of the system, and energy storage (ES) can effectively mitigate this problem as a flexible resource. However, the conventional ES allocation is mostly planned to meet the regulation demands of individual entities, which is likely to result in low utilization of ES and difficult to recover the investment cost. Therefore, a two-stage stochastic optimal allocation model for grid-side independent ES (IES) considering ES participating in the operation of multi-market trading, such as peak-valley arbitrage, frequency regulation, and leasing, is proposed in this paper to improve the comprehensive benefits and utilization rate of ES. The first stage aims to allocate IES and develop a systematic scheduling plan based on the forecast of wind power output and load demand, while the second stage responds to the uncertainty of wind power output by re-dispatching generating units and invoking ES power leased by wind farms. Then, a two-layer loop iterative solution algorithm based on the Benders decomposition is formed to effectively solve the proposed model. Finally, the approach developed in this paper is applied to a modified IEEE RTS-79 test system, and the results verify that it is both feasible and effective.</description><subject>Algorithms</subject><subject>Alternative energy sources</subject><subject>Benders decomposition</subject><subject>Energy storage</subject><subject>Iterative solution</subject><subject>Power dispatch</subject><subject>Wind power</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kc1q3DAQgE1poSHJoW8g6KkFbyWNZcvHEvIHgRzansVYGrvaei1X0h7yFnnkandDKTlUB0nMfHwz0lTVB8E3grfwRW24hKbr9ZvqTAqla5CyffvP_X11mdKWl9X0guvmrHr-loP9iSl7y8Ka_Q5nhvMcLGYfFhZGNkXv6uQdMb84WqlsS2a0UJyeWMoh4kTMhuWARL9Mr1MrxiL3axGWpF_Ybj9nX-8w_qLMckR3iIeV4rHkRfVuxDnR5ct5Xv24uf5-dVc_PN7eX319qK1sdK5FB72DoRfodEO6xaZD7XB0GnjnhB4cAihtwYmha7lUgxQEo2ht2wmnCM6r-5PXBdyaNZaXxycT0JtjIMTJHBufySjSyKUlAISGq0EDWgGjHlvLhXOquD6eXGsMv_eUstmGfVxK-waEhJ6rXkGhPp0oG0NKkca_VQU3h_kZZV7mV9jPJzZZn4__8h_4D0FlnTo</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Xu, Jiayin</creator><creator>Wang, Xuli</creator><creator>Zhu, Liuzhu</creator><creator>Shen, Yuming</creator><creator>Guo, Wenzhang</creator><creator>Hu, Xudong</creator><creator>Ma, Yinghao</creator><creator>Huang, Rishun</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0008-6154-3574</orcidid><orcidid>https://orcid.org/0000-0002-9984-2229</orcidid></search><sort><creationdate>20241001</creationdate><title>Stochastic optimal allocation of grid-side independent energy storage considering energy storage participating in multi-market trading operation</title><author>Xu, Jiayin ; Wang, Xuli ; Zhu, Liuzhu ; Shen, Yuming ; Guo, Wenzhang ; Hu, Xudong ; Ma, Yinghao ; Huang, Rishun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c248t-1739d3b91ad84e86a47a8dafd8307d18bda3358c3d1b76025b21e3f16c671d5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Alternative energy sources</topic><topic>Benders decomposition</topic><topic>Energy storage</topic><topic>Iterative solution</topic><topic>Power dispatch</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jiayin</creatorcontrib><creatorcontrib>Wang, Xuli</creatorcontrib><creatorcontrib>Zhu, Liuzhu</creatorcontrib><creatorcontrib>Shen, Yuming</creatorcontrib><creatorcontrib>Guo, Wenzhang</creatorcontrib><creatorcontrib>Hu, Xudong</creatorcontrib><creatorcontrib>Ma, Yinghao</creatorcontrib><creatorcontrib>Huang, Rishun</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jiayin</au><au>Wang, Xuli</au><au>Zhu, Liuzhu</au><au>Shen, Yuming</au><au>Guo, Wenzhang</au><au>Hu, Xudong</au><au>Ma, Yinghao</au><au>Huang, Rishun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic optimal allocation of grid-side independent energy storage considering energy storage participating in multi-market trading operation</atitle><jtitle>AIP advances</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>14</volume><issue>10</issue><spage>105223</spage><epage>105223-12</epage><pages>105223-105223-12</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>The integration of large-scale intermittent renewable energy generation into the power grid imposes challenges to the secure and economic operation of the system, and energy storage (ES) can effectively mitigate this problem as a flexible resource. However, the conventional ES allocation is mostly planned to meet the regulation demands of individual entities, which is likely to result in low utilization of ES and difficult to recover the investment cost. Therefore, a two-stage stochastic optimal allocation model for grid-side independent ES (IES) considering ES participating in the operation of multi-market trading, such as peak-valley arbitrage, frequency regulation, and leasing, is proposed in this paper to improve the comprehensive benefits and utilization rate of ES. The first stage aims to allocate IES and develop a systematic scheduling plan based on the forecast of wind power output and load demand, while the second stage responds to the uncertainty of wind power output by re-dispatching generating units and invoking ES power leased by wind farms. Then, a two-layer loop iterative solution algorithm based on the Benders decomposition is formed to effectively solve the proposed model. Finally, the approach developed in this paper is applied to a modified IEEE RTS-79 test system, and the results verify that it is both feasible and effective.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0234798</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0008-6154-3574</orcidid><orcidid>https://orcid.org/0000-0002-9984-2229</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2024-10, Vol.14 (10), p.105223-105223-12
issn 2158-3226
2158-3226
language eng
recordid cdi_scitation_primary_10_1063_5_0234798
source Directory of Open Access Journals; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects Algorithms
Alternative energy sources
Benders decomposition
Energy storage
Iterative solution
Power dispatch
Wind power
title Stochastic optimal allocation of grid-side independent energy storage considering energy storage participating in multi-market trading operation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A41%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20optimal%20allocation%20of%20grid-side%20independent%20energy%20storage%20considering%20energy%20storage%20participating%20in%20multi-market%20trading%20operation&rft.jtitle=AIP%20advances&rft.au=Xu,%20Jiayin&rft.date=2024-10-01&rft.volume=14&rft.issue=10&rft.spage=105223&rft.epage=105223-12&rft.pages=105223-105223-12&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0234798&rft_dat=%3Cproquest_scita%3E3123905953%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123905953&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_5e8a02ce33a3405b83ac13f8f6c01dd5&rfr_iscdi=true