Low-velocity impact response of lunar and Martian regolith simulants: Implications for lunar and Martian surface explorations
The granular mechanics of lunar and Martian regolith remain inadequately understood, impeding progress in successful exploration, landing, drilling, sampling, and construction activities on extraterrestrial surfaces. This study aims to bridge this knowledge gap by investigating the granular behavior...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2024-11, Vol.36 (11) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 36 |
creator | Ishii, Takuma Kioka, Arata Huang, Jyh-Jaan Steven Tabuchi, Yoshiki Yamada, Yasuhiro |
description | The granular mechanics of lunar and Martian regolith remain inadequately understood, impeding progress in successful exploration, landing, drilling, sampling, and construction activities on extraterrestrial surfaces. This study aims to bridge this knowledge gap by investigating the granular behavior of the lunar and Martian regolith under impact conditions. Impact cratering experiments were conducted for the lunar highlands, lunar mare, Martian regolith simulants (LHS-1, LMS-1, and MGS-1, respectively), and terrestrial silica sand with similar particle sizes as target granular materials, with a sphere projectile dropping at low velocities. A systematic analysis was undertaken to elucidate the influence of parameters, including the fall height of the projectile, impact velocity, kinetic energy of the projectile, porosity, cohesion, and internal friction angle, on the resulting crater depths. Our findings demonstrate that the crater depths of regolith layers of the lunar highlands and Martian surfaces are greater than those of the lunar mare regolith and terrestrial silica sand layers. For example, the crater depth of the lunar highland regolith layer is about two times greater than that of the terrestrial silica sand layer at an impact velocity of 40–70 cm/s. Additionally, our power-law scaling highlights less resistance to crater impact in the lunar and Martian regolith layers than in the terrestrial sand layer. Our study highlights a significant difference in granular behavior between the Earth's sand layer and the lunar and Martian regolith layers, providing valuable insights for future exploration, coring, drilling, and resource utilization endeavors on the lunar and Martian surfaces. |
doi_str_mv | 10.1063/5.0233884 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0233884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3124169548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-5675e31b85b7950bb0873be874f530e0425faf5f16737fd564752429c5f671693</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqUw8A8sMYGUYsefYUNVgUpFLDBbTmqDqyQOtgN04L-Tko6I6U66573TPQCcYzTDiJNrNkM5IVLSAzDBSBaZ4Jwf7nqBMs4JPgYnMW4QQqTI-QR8r_xn9mFqX7m0ha7pdJVgMLHzbTTQW1j3rQ5Qt2v4qENyuh2mr7526Q1G1_S1blO8gcumq12lkxti0PrwRyz2werKQPPV1T6M6Ck4srqO5mxfp-DlbvE8f8hWT_fL-e0qq7DMU8a4YIbgUrJSFAyVJZKClEYKahlBBtGcWW2ZxVwQYdeMU8FymhcVs1xgXpApuBj3dsG_9yYmtfF9aIeTiuCcDgijcqAuR6oKPsZgrOqCa3TYKozUzq5iam93YK9GNg7ifp_5B_4BVdx6kQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124169548</pqid></control><display><type>article</type><title>Low-velocity impact response of lunar and Martian regolith simulants: Implications for lunar and Martian surface explorations</title><source>AIP Journals Complete</source><creator>Ishii, Takuma ; Kioka, Arata ; Huang, Jyh-Jaan Steven ; Tabuchi, Yoshiki ; Yamada, Yasuhiro</creator><creatorcontrib>Ishii, Takuma ; Kioka, Arata ; Huang, Jyh-Jaan Steven ; Tabuchi, Yoshiki ; Yamada, Yasuhiro</creatorcontrib><description>The granular mechanics of lunar and Martian regolith remain inadequately understood, impeding progress in successful exploration, landing, drilling, sampling, and construction activities on extraterrestrial surfaces. This study aims to bridge this knowledge gap by investigating the granular behavior of the lunar and Martian regolith under impact conditions. Impact cratering experiments were conducted for the lunar highlands, lunar mare, Martian regolith simulants (LHS-1, LMS-1, and MGS-1, respectively), and terrestrial silica sand with similar particle sizes as target granular materials, with a sphere projectile dropping at low velocities. A systematic analysis was undertaken to elucidate the influence of parameters, including the fall height of the projectile, impact velocity, kinetic energy of the projectile, porosity, cohesion, and internal friction angle, on the resulting crater depths. Our findings demonstrate that the crater depths of regolith layers of the lunar highlands and Martian surfaces are greater than those of the lunar mare regolith and terrestrial silica sand layers. For example, the crater depth of the lunar highland regolith layer is about two times greater than that of the terrestrial silica sand layer at an impact velocity of 40–70 cm/s. Additionally, our power-law scaling highlights less resistance to crater impact in the lunar and Martian regolith layers than in the terrestrial sand layer. Our study highlights a significant difference in granular behavior between the Earth's sand layer and the lunar and Martian regolith layers, providing valuable insights for future exploration, coring, drilling, and resource utilization endeavors on the lunar and Martian surfaces.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0233884</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Coring ; Drilling ; Extraterrestrial matter ; Granular materials ; Highlands ; Impact analysis ; Impact resistance ; Impact response ; Impact velocity ; Internal friction ; Kinetic energy ; Lunar landing ; Lunar maria ; Lunar surface ; Mars craters ; Mars landing ; Mars surface ; Projectiles ; Regolith ; Resource utilization ; Sand ; Silicon dioxide</subject><ispartof>Physics of fluids (1994), 2024-11, Vol.36 (11)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-5675e31b85b7950bb0873be874f530e0425faf5f16737fd564752429c5f671693</cites><orcidid>0000-0002-0922-1112 ; 0009-0001-2496-9567 ; 0000-0001-8815-3957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Ishii, Takuma</creatorcontrib><creatorcontrib>Kioka, Arata</creatorcontrib><creatorcontrib>Huang, Jyh-Jaan Steven</creatorcontrib><creatorcontrib>Tabuchi, Yoshiki</creatorcontrib><creatorcontrib>Yamada, Yasuhiro</creatorcontrib><title>Low-velocity impact response of lunar and Martian regolith simulants: Implications for lunar and Martian surface explorations</title><title>Physics of fluids (1994)</title><description>The granular mechanics of lunar and Martian regolith remain inadequately understood, impeding progress in successful exploration, landing, drilling, sampling, and construction activities on extraterrestrial surfaces. This study aims to bridge this knowledge gap by investigating the granular behavior of the lunar and Martian regolith under impact conditions. Impact cratering experiments were conducted for the lunar highlands, lunar mare, Martian regolith simulants (LHS-1, LMS-1, and MGS-1, respectively), and terrestrial silica sand with similar particle sizes as target granular materials, with a sphere projectile dropping at low velocities. A systematic analysis was undertaken to elucidate the influence of parameters, including the fall height of the projectile, impact velocity, kinetic energy of the projectile, porosity, cohesion, and internal friction angle, on the resulting crater depths. Our findings demonstrate that the crater depths of regolith layers of the lunar highlands and Martian surfaces are greater than those of the lunar mare regolith and terrestrial silica sand layers. For example, the crater depth of the lunar highland regolith layer is about two times greater than that of the terrestrial silica sand layer at an impact velocity of 40–70 cm/s. Additionally, our power-law scaling highlights less resistance to crater impact in the lunar and Martian regolith layers than in the terrestrial sand layer. Our study highlights a significant difference in granular behavior between the Earth's sand layer and the lunar and Martian regolith layers, providing valuable insights for future exploration, coring, drilling, and resource utilization endeavors on the lunar and Martian surfaces.</description><subject>Coring</subject><subject>Drilling</subject><subject>Extraterrestrial matter</subject><subject>Granular materials</subject><subject>Highlands</subject><subject>Impact analysis</subject><subject>Impact resistance</subject><subject>Impact response</subject><subject>Impact velocity</subject><subject>Internal friction</subject><subject>Kinetic energy</subject><subject>Lunar landing</subject><subject>Lunar maria</subject><subject>Lunar surface</subject><subject>Mars craters</subject><subject>Mars landing</subject><subject>Mars surface</subject><subject>Projectiles</subject><subject>Regolith</subject><subject>Resource utilization</subject><subject>Sand</subject><subject>Silicon dioxide</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqUw8A8sMYGUYsefYUNVgUpFLDBbTmqDqyQOtgN04L-Tko6I6U66573TPQCcYzTDiJNrNkM5IVLSAzDBSBaZ4Jwf7nqBMs4JPgYnMW4QQqTI-QR8r_xn9mFqX7m0ha7pdJVgMLHzbTTQW1j3rQ5Qt2v4qENyuh2mr7526Q1G1_S1blO8gcumq12lkxti0PrwRyz2werKQPPV1T6M6Ck4srqO5mxfp-DlbvE8f8hWT_fL-e0qq7DMU8a4YIbgUrJSFAyVJZKClEYKahlBBtGcWW2ZxVwQYdeMU8FymhcVs1xgXpApuBj3dsG_9yYmtfF9aIeTiuCcDgijcqAuR6oKPsZgrOqCa3TYKozUzq5iam93YK9GNg7ifp_5B_4BVdx6kQ</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Ishii, Takuma</creator><creator>Kioka, Arata</creator><creator>Huang, Jyh-Jaan Steven</creator><creator>Tabuchi, Yoshiki</creator><creator>Yamada, Yasuhiro</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0922-1112</orcidid><orcidid>https://orcid.org/0009-0001-2496-9567</orcidid><orcidid>https://orcid.org/0000-0001-8815-3957</orcidid></search><sort><creationdate>202411</creationdate><title>Low-velocity impact response of lunar and Martian regolith simulants: Implications for lunar and Martian surface explorations</title><author>Ishii, Takuma ; Kioka, Arata ; Huang, Jyh-Jaan Steven ; Tabuchi, Yoshiki ; Yamada, Yasuhiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-5675e31b85b7950bb0873be874f530e0425faf5f16737fd564752429c5f671693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coring</topic><topic>Drilling</topic><topic>Extraterrestrial matter</topic><topic>Granular materials</topic><topic>Highlands</topic><topic>Impact analysis</topic><topic>Impact resistance</topic><topic>Impact response</topic><topic>Impact velocity</topic><topic>Internal friction</topic><topic>Kinetic energy</topic><topic>Lunar landing</topic><topic>Lunar maria</topic><topic>Lunar surface</topic><topic>Mars craters</topic><topic>Mars landing</topic><topic>Mars surface</topic><topic>Projectiles</topic><topic>Regolith</topic><topic>Resource utilization</topic><topic>Sand</topic><topic>Silicon dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishii, Takuma</creatorcontrib><creatorcontrib>Kioka, Arata</creatorcontrib><creatorcontrib>Huang, Jyh-Jaan Steven</creatorcontrib><creatorcontrib>Tabuchi, Yoshiki</creatorcontrib><creatorcontrib>Yamada, Yasuhiro</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishii, Takuma</au><au>Kioka, Arata</au><au>Huang, Jyh-Jaan Steven</au><au>Tabuchi, Yoshiki</au><au>Yamada, Yasuhiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-velocity impact response of lunar and Martian regolith simulants: Implications for lunar and Martian surface explorations</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-11</date><risdate>2024</risdate><volume>36</volume><issue>11</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The granular mechanics of lunar and Martian regolith remain inadequately understood, impeding progress in successful exploration, landing, drilling, sampling, and construction activities on extraterrestrial surfaces. This study aims to bridge this knowledge gap by investigating the granular behavior of the lunar and Martian regolith under impact conditions. Impact cratering experiments were conducted for the lunar highlands, lunar mare, Martian regolith simulants (LHS-1, LMS-1, and MGS-1, respectively), and terrestrial silica sand with similar particle sizes as target granular materials, with a sphere projectile dropping at low velocities. A systematic analysis was undertaken to elucidate the influence of parameters, including the fall height of the projectile, impact velocity, kinetic energy of the projectile, porosity, cohesion, and internal friction angle, on the resulting crater depths. Our findings demonstrate that the crater depths of regolith layers of the lunar highlands and Martian surfaces are greater than those of the lunar mare regolith and terrestrial silica sand layers. For example, the crater depth of the lunar highland regolith layer is about two times greater than that of the terrestrial silica sand layer at an impact velocity of 40–70 cm/s. Additionally, our power-law scaling highlights less resistance to crater impact in the lunar and Martian regolith layers than in the terrestrial sand layer. Our study highlights a significant difference in granular behavior between the Earth's sand layer and the lunar and Martian regolith layers, providing valuable insights for future exploration, coring, drilling, and resource utilization endeavors on the lunar and Martian surfaces.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0233884</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0922-1112</orcidid><orcidid>https://orcid.org/0009-0001-2496-9567</orcidid><orcidid>https://orcid.org/0000-0001-8815-3957</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2024-11, Vol.36 (11) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0233884 |
source | AIP Journals Complete |
subjects | Coring Drilling Extraterrestrial matter Granular materials Highlands Impact analysis Impact resistance Impact response Impact velocity Internal friction Kinetic energy Lunar landing Lunar maria Lunar surface Mars craters Mars landing Mars surface Projectiles Regolith Resource utilization Sand Silicon dioxide |
title | Low-velocity impact response of lunar and Martian regolith simulants: Implications for lunar and Martian surface explorations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A35%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-velocity%20impact%20response%20of%20lunar%20and%20Martian%20regolith%20simulants:%20Implications%20for%20lunar%20and%20Martian%20surface%20explorations&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Ishii,%20Takuma&rft.date=2024-11&rft.volume=36&rft.issue=11&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0233884&rft_dat=%3Cproquest_scita%3E3124169548%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124169548&rft_id=info:pmid/&rfr_iscdi=true |