The effect of ratio geometry based on characteristic using fluidic oscillator
This study discusses the fluidic oscillator using computational methods. The analysis was carried out in a transient state with the URANS equation. The turbulence model used is k-ω SST. The fluidic oscillator was analyzed by varying the size of the fluidic oscillator by doubling the baseline and red...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 3090 |
creator | Julian, James Iskandar, Waridho Wahyuni, Fitri Adhynugraha, Muhammad Ilham Hasim, Fadilah Winarta, Adi |
description | This study discusses the fluidic oscillator using computational methods. The analysis was carried out in a transient state with the URANS equation. The turbulence model used is k-ω SST. The fluidic oscillator was analyzed by varying the size of the fluidic oscillator by doubling the baseline and reducing its size by half. The analysis was carried out using the magnitude velocity curve to time changes, velocity profiles, and fluid flow contours. Based on the results of the velocity analysis at two points, it can be concluded that the fluidic oscillator can produce an oscillating fluid flow with a maximum velocity of almost eight times the inlet velocity. Meanwhile, the velocity profile in the feedback channel is alternately positive and negative due to the backflow phenomenon. In the mixing chamber, an adverse velocity profile can also be found, indicating the mixing flow’s presence. Based on the magnitude velocity analysis results, it can be concluded that changing the dimensions by increasing the size of the fluidic oscillator does not produce significant changes. Meanwhile, the velocity profile on the feedback channel shows a significant change in model 3. The velocity contour shows that at t=4 s, the fluid from fluidic oscillator model 1 has lost its oscillator effect. However, this is not the case with the model 2 and 3 fluidic oscillators. |
doi_str_mv | 10.1063/5.0231136 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0231136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3114248618</sourcerecordid><originalsourceid>FETCH-LOGICAL-p636-3badc75ce81a3d9084938effa26061c0a2d49ad1f70d6a3611bb0824118281d13</originalsourceid><addsrcrecordid>eNotUM1rwyAclbHBsm6H_QfCboN0_tQYcxxlX9CxSw67iVHTWtLYqTn0v19Ke3o8eLwvhB6BLIEI9lItCWUATFyhAqoKylqAuEYFIQ0vKWe_t-gupR0htKlrWaDvduuw63tnMg49jjr7gDcu7F2OR9zp5CwOIzZbHbXJLvqUvcFT8uMG98Pk7cxCMn4YdA7xHt30ekju4YIL1L6_tavPcv3z8bV6XZcHwUTJOm1NXRknQTPbEMkbJucOmgoiwBBNLW-0hb4mVmgmALqOSMoBJJVggS3Q09n2EMPf5FJWuzDFcU5U83ZOuRQgZ9XzWTXXy6ddozpEv9fxqICo01uqUpe32D-vgluC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3114248618</pqid></control><display><type>conference_proceeding</type><title>The effect of ratio geometry based on characteristic using fluidic oscillator</title><source>AIP Journals Complete</source><creator>Julian, James ; Iskandar, Waridho ; Wahyuni, Fitri ; Adhynugraha, Muhammad Ilham ; Hasim, Fadilah ; Winarta, Adi</creator><contributor>Saptoadi, Harwin ; Ariyadi, Hifni Mukhtar ; Deendarlianto ; Indarto ; Putra, Robertus Dhimas Dhewangga</contributor><creatorcontrib>Julian, James ; Iskandar, Waridho ; Wahyuni, Fitri ; Adhynugraha, Muhammad Ilham ; Hasim, Fadilah ; Winarta, Adi ; Saptoadi, Harwin ; Ariyadi, Hifni Mukhtar ; Deendarlianto ; Indarto ; Putra, Robertus Dhimas Dhewangga</creatorcontrib><description>This study discusses the fluidic oscillator using computational methods. The analysis was carried out in a transient state with the URANS equation. The turbulence model used is k-ω SST. The fluidic oscillator was analyzed by varying the size of the fluidic oscillator by doubling the baseline and reducing its size by half. The analysis was carried out using the magnitude velocity curve to time changes, velocity profiles, and fluid flow contours. Based on the results of the velocity analysis at two points, it can be concluded that the fluidic oscillator can produce an oscillating fluid flow with a maximum velocity of almost eight times the inlet velocity. Meanwhile, the velocity profile in the feedback channel is alternately positive and negative due to the backflow phenomenon. In the mixing chamber, an adverse velocity profile can also be found, indicating the mixing flow’s presence. Based on the magnitude velocity analysis results, it can be concluded that changing the dimensions by increasing the size of the fluidic oscillator does not produce significant changes. Meanwhile, the velocity profile on the feedback channel shows a significant change in model 3. The velocity contour shows that at t=4 s, the fluid from fluidic oscillator model 1 has lost its oscillator effect. However, this is not the case with the model 2 and 3 fluidic oscillators.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0231136</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Feedback ; Fluid flow ; Oscillators ; Turbulence models ; Turbulent flow ; Velocity ; Velocity distribution</subject><ispartof>AIP Conference Proceedings, 2024, Vol.3090 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0231136$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Saptoadi, Harwin</contributor><contributor>Ariyadi, Hifni Mukhtar</contributor><contributor>Deendarlianto</contributor><contributor>Indarto</contributor><contributor>Putra, Robertus Dhimas Dhewangga</contributor><creatorcontrib>Julian, James</creatorcontrib><creatorcontrib>Iskandar, Waridho</creatorcontrib><creatorcontrib>Wahyuni, Fitri</creatorcontrib><creatorcontrib>Adhynugraha, Muhammad Ilham</creatorcontrib><creatorcontrib>Hasim, Fadilah</creatorcontrib><creatorcontrib>Winarta, Adi</creatorcontrib><title>The effect of ratio geometry based on characteristic using fluidic oscillator</title><title>AIP Conference Proceedings</title><description>This study discusses the fluidic oscillator using computational methods. The analysis was carried out in a transient state with the URANS equation. The turbulence model used is k-ω SST. The fluidic oscillator was analyzed by varying the size of the fluidic oscillator by doubling the baseline and reducing its size by half. The analysis was carried out using the magnitude velocity curve to time changes, velocity profiles, and fluid flow contours. Based on the results of the velocity analysis at two points, it can be concluded that the fluidic oscillator can produce an oscillating fluid flow with a maximum velocity of almost eight times the inlet velocity. Meanwhile, the velocity profile in the feedback channel is alternately positive and negative due to the backflow phenomenon. In the mixing chamber, an adverse velocity profile can also be found, indicating the mixing flow’s presence. Based on the magnitude velocity analysis results, it can be concluded that changing the dimensions by increasing the size of the fluidic oscillator does not produce significant changes. Meanwhile, the velocity profile on the feedback channel shows a significant change in model 3. The velocity contour shows that at t=4 s, the fluid from fluidic oscillator model 1 has lost its oscillator effect. However, this is not the case with the model 2 and 3 fluidic oscillators.</description><subject>Feedback</subject><subject>Fluid flow</subject><subject>Oscillators</subject><subject>Turbulence models</subject><subject>Turbulent flow</subject><subject>Velocity</subject><subject>Velocity distribution</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotUM1rwyAclbHBsm6H_QfCboN0_tQYcxxlX9CxSw67iVHTWtLYqTn0v19Ke3o8eLwvhB6BLIEI9lItCWUATFyhAqoKylqAuEYFIQ0vKWe_t-gupR0htKlrWaDvduuw63tnMg49jjr7gDcu7F2OR9zp5CwOIzZbHbXJLvqUvcFT8uMG98Pk7cxCMn4YdA7xHt30ekju4YIL1L6_tavPcv3z8bV6XZcHwUTJOm1NXRknQTPbEMkbJucOmgoiwBBNLW-0hb4mVmgmALqOSMoBJJVggS3Q09n2EMPf5FJWuzDFcU5U83ZOuRQgZ9XzWTXXy6ddozpEv9fxqICo01uqUpe32D-vgluC</recordid><startdate>20241008</startdate><enddate>20241008</enddate><creator>Julian, James</creator><creator>Iskandar, Waridho</creator><creator>Wahyuni, Fitri</creator><creator>Adhynugraha, Muhammad Ilham</creator><creator>Hasim, Fadilah</creator><creator>Winarta, Adi</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20241008</creationdate><title>The effect of ratio geometry based on characteristic using fluidic oscillator</title><author>Julian, James ; Iskandar, Waridho ; Wahyuni, Fitri ; Adhynugraha, Muhammad Ilham ; Hasim, Fadilah ; Winarta, Adi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p636-3badc75ce81a3d9084938effa26061c0a2d49ad1f70d6a3611bb0824118281d13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Feedback</topic><topic>Fluid flow</topic><topic>Oscillators</topic><topic>Turbulence models</topic><topic>Turbulent flow</topic><topic>Velocity</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Julian, James</creatorcontrib><creatorcontrib>Iskandar, Waridho</creatorcontrib><creatorcontrib>Wahyuni, Fitri</creatorcontrib><creatorcontrib>Adhynugraha, Muhammad Ilham</creatorcontrib><creatorcontrib>Hasim, Fadilah</creatorcontrib><creatorcontrib>Winarta, Adi</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Julian, James</au><au>Iskandar, Waridho</au><au>Wahyuni, Fitri</au><au>Adhynugraha, Muhammad Ilham</au><au>Hasim, Fadilah</au><au>Winarta, Adi</au><au>Saptoadi, Harwin</au><au>Ariyadi, Hifni Mukhtar</au><au>Deendarlianto</au><au>Indarto</au><au>Putra, Robertus Dhimas Dhewangga</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The effect of ratio geometry based on characteristic using fluidic oscillator</atitle><btitle>AIP Conference Proceedings</btitle><date>2024-10-08</date><risdate>2024</risdate><volume>3090</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>This study discusses the fluidic oscillator using computational methods. The analysis was carried out in a transient state with the URANS equation. The turbulence model used is k-ω SST. The fluidic oscillator was analyzed by varying the size of the fluidic oscillator by doubling the baseline and reducing its size by half. The analysis was carried out using the magnitude velocity curve to time changes, velocity profiles, and fluid flow contours. Based on the results of the velocity analysis at two points, it can be concluded that the fluidic oscillator can produce an oscillating fluid flow with a maximum velocity of almost eight times the inlet velocity. Meanwhile, the velocity profile in the feedback channel is alternately positive and negative due to the backflow phenomenon. In the mixing chamber, an adverse velocity profile can also be found, indicating the mixing flow’s presence. Based on the magnitude velocity analysis results, it can be concluded that changing the dimensions by increasing the size of the fluidic oscillator does not produce significant changes. Meanwhile, the velocity profile on the feedback channel shows a significant change in model 3. The velocity contour shows that at t=4 s, the fluid from fluidic oscillator model 1 has lost its oscillator effect. However, this is not the case with the model 2 and 3 fluidic oscillators.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0231136</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2024, Vol.3090 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0231136 |
source | AIP Journals Complete |
subjects | Feedback Fluid flow Oscillators Turbulence models Turbulent flow Velocity Velocity distribution |
title | The effect of ratio geometry based on characteristic using fluidic oscillator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T14%3A36%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20effect%20of%20ratio%20geometry%20based%20on%20characteristic%20using%20fluidic%20oscillator&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Julian,%20James&rft.date=2024-10-08&rft.volume=3090&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0231136&rft_dat=%3Cproquest_scita%3E3114248618%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3114248618&rft_id=info:pmid/&rfr_iscdi=true |