Multi-channel frequency router based on valley-Hall metacrystals
Topological photonics has revolutionized the manipulation of electromagnetic waves by leveraging various topological phases proposed originally in condensed matter, leading to robust and error-immune signal processing. Despite considerable efforts, a critical challenge remains in devising frequency...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2024-12, Vol.125 (24) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 125 |
creator | Fan, Jiayu Li, Haitao Kang, Shijie Chen, Peng Xie, Biye Ling, Fang Deng, Ruping Wu, Xiaoxiao |
description | Topological photonics has revolutionized the manipulation of electromagnetic waves by leveraging various topological phases proposed originally in condensed matter, leading to robust and error-immune signal processing. Despite considerable efforts, a critical challenge remains in devising frequency routers operating at a broadband frequency range with limited crosstalk. Previous designs usually relied on fine-tuning of parameters and are difficult to be integrated efficiently and compactly. Here, targeting the demand for frequency-selective applications in on-chip photonics, we explore a topological approach to photonic frequency router via valley-Hall metacrystals. Diverging from the majority of studies focusing on zigzag interfaces, our research shifts the attention to armchair interfaces within an type-A type-B type-A (ABA) sandwich-like structure, where a single column of type-B unit cells acts as a replacement in the background type-A metacrystal. Essentially, through tuning a single geometric parameter of the type-B unit cells, this configuration gives rise to interface states within a customized frequency band, enabling signal routing with limited crosstalk to meet specified demands. Moreover, this concept is practically demonstrated through a photonic frequency router with three distinct channels, experimentally exhibiting robust wave transmissions with excellent agreement with the design. This investigation manifests possible applications of the armchair interfaces in valley-Hall photonic systems and advances development of photonic devices that are both compact and efficient. Notably, the approach is naturally compatible with on-chip photonics and integration, which could benefit telecommunications and optical computing applications. |
doi_str_mv | 10.1063/5.0230532 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0230532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142698343</sourcerecordid><originalsourceid>FETCH-LOGICAL-p632-7421cae4139b6d7b5b7c7c24920fdef444fe244d275bc86ea522407f1ab92aaf3</originalsourceid><addsrcrecordid>eNotkEFLxDAUhIMoWFcP_oOCNyFr8l7StDdlUVdY8bL3kKYJdum2NUmF_nsru6ePgWFmGELuOVtzVuCTXDNAJhEuSMaZUhQ5Ly9JxhhDWlSSX5ObGA-LlICYkefPqUsttd-m712X--B-JtfbOQ_DlFzIaxNdkw99_mu6zs10uyA_umRsmGMyXbwlV36BuztzRfZvr_vNlu6-3j82Lzs6FghUCeDWOMGxqotG1bJWVlkQFTDfOC-E8A6EaEDJ2paFMxJAMOW5qSswxuOKPJxixzAsC2PSh2EK_dKokQsoqhIFLq7HkyvaNpnUDr0eQ3s0Ydac6f-DtNTng_APaORXOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142698343</pqid></control><display><type>article</type><title>Multi-channel frequency router based on valley-Hall metacrystals</title><source>AIP Journals Complete</source><creator>Fan, Jiayu ; Li, Haitao ; Kang, Shijie ; Chen, Peng ; Xie, Biye ; Ling, Fang ; Deng, Ruping ; Wu, Xiaoxiao</creator><creatorcontrib>Fan, Jiayu ; Li, Haitao ; Kang, Shijie ; Chen, Peng ; Xie, Biye ; Ling, Fang ; Deng, Ruping ; Wu, Xiaoxiao</creatorcontrib><description>Topological photonics has revolutionized the manipulation of electromagnetic waves by leveraging various topological phases proposed originally in condensed matter, leading to robust and error-immune signal processing. Despite considerable efforts, a critical challenge remains in devising frequency routers operating at a broadband frequency range with limited crosstalk. Previous designs usually relied on fine-tuning of parameters and are difficult to be integrated efficiently and compactly. Here, targeting the demand for frequency-selective applications in on-chip photonics, we explore a topological approach to photonic frequency router via valley-Hall metacrystals. Diverging from the majority of studies focusing on zigzag interfaces, our research shifts the attention to armchair interfaces within an type-A type-B type-A (ABA) sandwich-like structure, where a single column of type-B unit cells acts as a replacement in the background type-A metacrystal. Essentially, through tuning a single geometric parameter of the type-B unit cells, this configuration gives rise to interface states within a customized frequency band, enabling signal routing with limited crosstalk to meet specified demands. Moreover, this concept is practically demonstrated through a photonic frequency router with three distinct channels, experimentally exhibiting robust wave transmissions with excellent agreement with the design. This investigation manifests possible applications of the armchair interfaces in valley-Hall photonic systems and advances development of photonic devices that are both compact and efficient. Notably, the approach is naturally compatible with on-chip photonics and integration, which could benefit telecommunications and optical computing applications.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0230532</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Broadband ; Columnar structure ; Crosstalk ; Electromagnetic radiation ; Frequencies ; Frequency ranges ; Parameters ; Photonics ; Robustness ; Routers ; Signal processing ; Topology</subject><ispartof>Applied physics letters, 2024-12, Vol.125 (24)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7258-8913 ; 0000-0003-3183-4975 ; 0009-0009-3515-0969 ; 0009-0007-7028-2487 ; 0000-0002-9468-396X ; 0000-0002-1515-9546</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0230532$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Fan, Jiayu</creatorcontrib><creatorcontrib>Li, Haitao</creatorcontrib><creatorcontrib>Kang, Shijie</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Xie, Biye</creatorcontrib><creatorcontrib>Ling, Fang</creatorcontrib><creatorcontrib>Deng, Ruping</creatorcontrib><creatorcontrib>Wu, Xiaoxiao</creatorcontrib><title>Multi-channel frequency router based on valley-Hall metacrystals</title><title>Applied physics letters</title><description>Topological photonics has revolutionized the manipulation of electromagnetic waves by leveraging various topological phases proposed originally in condensed matter, leading to robust and error-immune signal processing. Despite considerable efforts, a critical challenge remains in devising frequency routers operating at a broadband frequency range with limited crosstalk. Previous designs usually relied on fine-tuning of parameters and are difficult to be integrated efficiently and compactly. Here, targeting the demand for frequency-selective applications in on-chip photonics, we explore a topological approach to photonic frequency router via valley-Hall metacrystals. Diverging from the majority of studies focusing on zigzag interfaces, our research shifts the attention to armchair interfaces within an type-A type-B type-A (ABA) sandwich-like structure, where a single column of type-B unit cells acts as a replacement in the background type-A metacrystal. Essentially, through tuning a single geometric parameter of the type-B unit cells, this configuration gives rise to interface states within a customized frequency band, enabling signal routing with limited crosstalk to meet specified demands. Moreover, this concept is practically demonstrated through a photonic frequency router with three distinct channels, experimentally exhibiting robust wave transmissions with excellent agreement with the design. This investigation manifests possible applications of the armchair interfaces in valley-Hall photonic systems and advances development of photonic devices that are both compact and efficient. Notably, the approach is naturally compatible with on-chip photonics and integration, which could benefit telecommunications and optical computing applications.</description><subject>Broadband</subject><subject>Columnar structure</subject><subject>Crosstalk</subject><subject>Electromagnetic radiation</subject><subject>Frequencies</subject><subject>Frequency ranges</subject><subject>Parameters</subject><subject>Photonics</subject><subject>Robustness</subject><subject>Routers</subject><subject>Signal processing</subject><subject>Topology</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkEFLxDAUhIMoWFcP_oOCNyFr8l7StDdlUVdY8bL3kKYJdum2NUmF_nsru6ePgWFmGELuOVtzVuCTXDNAJhEuSMaZUhQ5Ly9JxhhDWlSSX5ObGA-LlICYkefPqUsttd-m712X--B-JtfbOQ_DlFzIaxNdkw99_mu6zs10uyA_umRsmGMyXbwlV36BuztzRfZvr_vNlu6-3j82Lzs6FghUCeDWOMGxqotG1bJWVlkQFTDfOC-E8A6EaEDJ2paFMxJAMOW5qSswxuOKPJxixzAsC2PSh2EK_dKokQsoqhIFLq7HkyvaNpnUDr0eQ3s0Ydac6f-DtNTng_APaORXOw</recordid><startdate>20241209</startdate><enddate>20241209</enddate><creator>Fan, Jiayu</creator><creator>Li, Haitao</creator><creator>Kang, Shijie</creator><creator>Chen, Peng</creator><creator>Xie, Biye</creator><creator>Ling, Fang</creator><creator>Deng, Ruping</creator><creator>Wu, Xiaoxiao</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7258-8913</orcidid><orcidid>https://orcid.org/0000-0003-3183-4975</orcidid><orcidid>https://orcid.org/0009-0009-3515-0969</orcidid><orcidid>https://orcid.org/0009-0007-7028-2487</orcidid><orcidid>https://orcid.org/0000-0002-9468-396X</orcidid><orcidid>https://orcid.org/0000-0002-1515-9546</orcidid></search><sort><creationdate>20241209</creationdate><title>Multi-channel frequency router based on valley-Hall metacrystals</title><author>Fan, Jiayu ; Li, Haitao ; Kang, Shijie ; Chen, Peng ; Xie, Biye ; Ling, Fang ; Deng, Ruping ; Wu, Xiaoxiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p632-7421cae4139b6d7b5b7c7c24920fdef444fe244d275bc86ea522407f1ab92aaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Broadband</topic><topic>Columnar structure</topic><topic>Crosstalk</topic><topic>Electromagnetic radiation</topic><topic>Frequencies</topic><topic>Frequency ranges</topic><topic>Parameters</topic><topic>Photonics</topic><topic>Robustness</topic><topic>Routers</topic><topic>Signal processing</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Jiayu</creatorcontrib><creatorcontrib>Li, Haitao</creatorcontrib><creatorcontrib>Kang, Shijie</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Xie, Biye</creatorcontrib><creatorcontrib>Ling, Fang</creatorcontrib><creatorcontrib>Deng, Ruping</creatorcontrib><creatorcontrib>Wu, Xiaoxiao</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Jiayu</au><au>Li, Haitao</au><au>Kang, Shijie</au><au>Chen, Peng</au><au>Xie, Biye</au><au>Ling, Fang</au><au>Deng, Ruping</au><au>Wu, Xiaoxiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-channel frequency router based on valley-Hall metacrystals</atitle><jtitle>Applied physics letters</jtitle><date>2024-12-09</date><risdate>2024</risdate><volume>125</volume><issue>24</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Topological photonics has revolutionized the manipulation of electromagnetic waves by leveraging various topological phases proposed originally in condensed matter, leading to robust and error-immune signal processing. Despite considerable efforts, a critical challenge remains in devising frequency routers operating at a broadband frequency range with limited crosstalk. Previous designs usually relied on fine-tuning of parameters and are difficult to be integrated efficiently and compactly. Here, targeting the demand for frequency-selective applications in on-chip photonics, we explore a topological approach to photonic frequency router via valley-Hall metacrystals. Diverging from the majority of studies focusing on zigzag interfaces, our research shifts the attention to armchair interfaces within an type-A type-B type-A (ABA) sandwich-like structure, where a single column of type-B unit cells acts as a replacement in the background type-A metacrystal. Essentially, through tuning a single geometric parameter of the type-B unit cells, this configuration gives rise to interface states within a customized frequency band, enabling signal routing with limited crosstalk to meet specified demands. Moreover, this concept is practically demonstrated through a photonic frequency router with three distinct channels, experimentally exhibiting robust wave transmissions with excellent agreement with the design. This investigation manifests possible applications of the armchair interfaces in valley-Hall photonic systems and advances development of photonic devices that are both compact and efficient. Notably, the approach is naturally compatible with on-chip photonics and integration, which could benefit telecommunications and optical computing applications.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0230532</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7258-8913</orcidid><orcidid>https://orcid.org/0000-0003-3183-4975</orcidid><orcidid>https://orcid.org/0009-0009-3515-0969</orcidid><orcidid>https://orcid.org/0009-0007-7028-2487</orcidid><orcidid>https://orcid.org/0000-0002-9468-396X</orcidid><orcidid>https://orcid.org/0000-0002-1515-9546</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2024-12, Vol.125 (24) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0230532 |
source | AIP Journals Complete |
subjects | Broadband Columnar structure Crosstalk Electromagnetic radiation Frequencies Frequency ranges Parameters Photonics Robustness Routers Signal processing Topology |
title | Multi-channel frequency router based on valley-Hall metacrystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A35%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-channel%20frequency%20router%20based%20on%20valley-Hall%20metacrystals&rft.jtitle=Applied%20physics%20letters&rft.au=Fan,%20Jiayu&rft.date=2024-12-09&rft.volume=125&rft.issue=24&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0230532&rft_dat=%3Cproquest_scita%3E3142698343%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3142698343&rft_id=info:pmid/&rfr_iscdi=true |