Multi-channel frequency router based on valley-Hall metacrystals

Topological photonics has revolutionized the manipulation of electromagnetic waves by leveraging various topological phases proposed originally in condensed matter, leading to robust and error-immune signal processing. Despite considerable efforts, a critical challenge remains in devising frequency...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2024-12, Vol.125 (24)
Hauptverfasser: Fan, Jiayu, Li, Haitao, Kang, Shijie, Chen, Peng, Xie, Biye, Ling, Fang, Deng, Ruping, Wu, Xiaoxiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page
container_title Applied physics letters
container_volume 125
creator Fan, Jiayu
Li, Haitao
Kang, Shijie
Chen, Peng
Xie, Biye
Ling, Fang
Deng, Ruping
Wu, Xiaoxiao
description Topological photonics has revolutionized the manipulation of electromagnetic waves by leveraging various topological phases proposed originally in condensed matter, leading to robust and error-immune signal processing. Despite considerable efforts, a critical challenge remains in devising frequency routers operating at a broadband frequency range with limited crosstalk. Previous designs usually relied on fine-tuning of parameters and are difficult to be integrated efficiently and compactly. Here, targeting the demand for frequency-selective applications in on-chip photonics, we explore a topological approach to photonic frequency router via valley-Hall metacrystals. Diverging from the majority of studies focusing on zigzag interfaces, our research shifts the attention to armchair interfaces within an type-A type-B type-A (ABA) sandwich-like structure, where a single column of type-B unit cells acts as a replacement in the background type-A metacrystal. Essentially, through tuning a single geometric parameter of the type-B unit cells, this configuration gives rise to interface states within a customized frequency band, enabling signal routing with limited crosstalk to meet specified demands. Moreover, this concept is practically demonstrated through a photonic frequency router with three distinct channels, experimentally exhibiting robust wave transmissions with excellent agreement with the design. This investigation manifests possible applications of the armchair interfaces in valley-Hall photonic systems and advances development of photonic devices that are both compact and efficient. Notably, the approach is naturally compatible with on-chip photonics and integration, which could benefit telecommunications and optical computing applications.
doi_str_mv 10.1063/5.0230532
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0230532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142698343</sourcerecordid><originalsourceid>FETCH-LOGICAL-p632-7421cae4139b6d7b5b7c7c24920fdef444fe244d275bc86ea522407f1ab92aaf3</originalsourceid><addsrcrecordid>eNotkEFLxDAUhIMoWFcP_oOCNyFr8l7StDdlUVdY8bL3kKYJdum2NUmF_nsru6ePgWFmGELuOVtzVuCTXDNAJhEuSMaZUhQ5Ly9JxhhDWlSSX5ObGA-LlICYkefPqUsttd-m712X--B-JtfbOQ_DlFzIaxNdkw99_mu6zs10uyA_umRsmGMyXbwlV36BuztzRfZvr_vNlu6-3j82Lzs6FghUCeDWOMGxqotG1bJWVlkQFTDfOC-E8A6EaEDJ2paFMxJAMOW5qSswxuOKPJxixzAsC2PSh2EK_dKokQsoqhIFLq7HkyvaNpnUDr0eQ3s0Ydac6f-DtNTng_APaORXOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142698343</pqid></control><display><type>article</type><title>Multi-channel frequency router based on valley-Hall metacrystals</title><source>AIP Journals Complete</source><creator>Fan, Jiayu ; Li, Haitao ; Kang, Shijie ; Chen, Peng ; Xie, Biye ; Ling, Fang ; Deng, Ruping ; Wu, Xiaoxiao</creator><creatorcontrib>Fan, Jiayu ; Li, Haitao ; Kang, Shijie ; Chen, Peng ; Xie, Biye ; Ling, Fang ; Deng, Ruping ; Wu, Xiaoxiao</creatorcontrib><description>Topological photonics has revolutionized the manipulation of electromagnetic waves by leveraging various topological phases proposed originally in condensed matter, leading to robust and error-immune signal processing. Despite considerable efforts, a critical challenge remains in devising frequency routers operating at a broadband frequency range with limited crosstalk. Previous designs usually relied on fine-tuning of parameters and are difficult to be integrated efficiently and compactly. Here, targeting the demand for frequency-selective applications in on-chip photonics, we explore a topological approach to photonic frequency router via valley-Hall metacrystals. Diverging from the majority of studies focusing on zigzag interfaces, our research shifts the attention to armchair interfaces within an type-A type-B type-A (ABA) sandwich-like structure, where a single column of type-B unit cells acts as a replacement in the background type-A metacrystal. Essentially, through tuning a single geometric parameter of the type-B unit cells, this configuration gives rise to interface states within a customized frequency band, enabling signal routing with limited crosstalk to meet specified demands. Moreover, this concept is practically demonstrated through a photonic frequency router with three distinct channels, experimentally exhibiting robust wave transmissions with excellent agreement with the design. This investigation manifests possible applications of the armchair interfaces in valley-Hall photonic systems and advances development of photonic devices that are both compact and efficient. Notably, the approach is naturally compatible with on-chip photonics and integration, which could benefit telecommunications and optical computing applications.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0230532</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Broadband ; Columnar structure ; Crosstalk ; Electromagnetic radiation ; Frequencies ; Frequency ranges ; Parameters ; Photonics ; Robustness ; Routers ; Signal processing ; Topology</subject><ispartof>Applied physics letters, 2024-12, Vol.125 (24)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7258-8913 ; 0000-0003-3183-4975 ; 0009-0009-3515-0969 ; 0009-0007-7028-2487 ; 0000-0002-9468-396X ; 0000-0002-1515-9546</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0230532$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Fan, Jiayu</creatorcontrib><creatorcontrib>Li, Haitao</creatorcontrib><creatorcontrib>Kang, Shijie</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Xie, Biye</creatorcontrib><creatorcontrib>Ling, Fang</creatorcontrib><creatorcontrib>Deng, Ruping</creatorcontrib><creatorcontrib>Wu, Xiaoxiao</creatorcontrib><title>Multi-channel frequency router based on valley-Hall metacrystals</title><title>Applied physics letters</title><description>Topological photonics has revolutionized the manipulation of electromagnetic waves by leveraging various topological phases proposed originally in condensed matter, leading to robust and error-immune signal processing. Despite considerable efforts, a critical challenge remains in devising frequency routers operating at a broadband frequency range with limited crosstalk. Previous designs usually relied on fine-tuning of parameters and are difficult to be integrated efficiently and compactly. Here, targeting the demand for frequency-selective applications in on-chip photonics, we explore a topological approach to photonic frequency router via valley-Hall metacrystals. Diverging from the majority of studies focusing on zigzag interfaces, our research shifts the attention to armchair interfaces within an type-A type-B type-A (ABA) sandwich-like structure, where a single column of type-B unit cells acts as a replacement in the background type-A metacrystal. Essentially, through tuning a single geometric parameter of the type-B unit cells, this configuration gives rise to interface states within a customized frequency band, enabling signal routing with limited crosstalk to meet specified demands. Moreover, this concept is practically demonstrated through a photonic frequency router with three distinct channels, experimentally exhibiting robust wave transmissions with excellent agreement with the design. This investigation manifests possible applications of the armchair interfaces in valley-Hall photonic systems and advances development of photonic devices that are both compact and efficient. Notably, the approach is naturally compatible with on-chip photonics and integration, which could benefit telecommunications and optical computing applications.</description><subject>Broadband</subject><subject>Columnar structure</subject><subject>Crosstalk</subject><subject>Electromagnetic radiation</subject><subject>Frequencies</subject><subject>Frequency ranges</subject><subject>Parameters</subject><subject>Photonics</subject><subject>Robustness</subject><subject>Routers</subject><subject>Signal processing</subject><subject>Topology</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkEFLxDAUhIMoWFcP_oOCNyFr8l7StDdlUVdY8bL3kKYJdum2NUmF_nsru6ePgWFmGELuOVtzVuCTXDNAJhEuSMaZUhQ5Ly9JxhhDWlSSX5ObGA-LlICYkefPqUsttd-m712X--B-JtfbOQ_DlFzIaxNdkw99_mu6zs10uyA_umRsmGMyXbwlV36BuztzRfZvr_vNlu6-3j82Lzs6FghUCeDWOMGxqotG1bJWVlkQFTDfOC-E8A6EaEDJ2paFMxJAMOW5qSswxuOKPJxixzAsC2PSh2EK_dKokQsoqhIFLq7HkyvaNpnUDr0eQ3s0Ydac6f-DtNTng_APaORXOw</recordid><startdate>20241209</startdate><enddate>20241209</enddate><creator>Fan, Jiayu</creator><creator>Li, Haitao</creator><creator>Kang, Shijie</creator><creator>Chen, Peng</creator><creator>Xie, Biye</creator><creator>Ling, Fang</creator><creator>Deng, Ruping</creator><creator>Wu, Xiaoxiao</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7258-8913</orcidid><orcidid>https://orcid.org/0000-0003-3183-4975</orcidid><orcidid>https://orcid.org/0009-0009-3515-0969</orcidid><orcidid>https://orcid.org/0009-0007-7028-2487</orcidid><orcidid>https://orcid.org/0000-0002-9468-396X</orcidid><orcidid>https://orcid.org/0000-0002-1515-9546</orcidid></search><sort><creationdate>20241209</creationdate><title>Multi-channel frequency router based on valley-Hall metacrystals</title><author>Fan, Jiayu ; Li, Haitao ; Kang, Shijie ; Chen, Peng ; Xie, Biye ; Ling, Fang ; Deng, Ruping ; Wu, Xiaoxiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p632-7421cae4139b6d7b5b7c7c24920fdef444fe244d275bc86ea522407f1ab92aaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Broadband</topic><topic>Columnar structure</topic><topic>Crosstalk</topic><topic>Electromagnetic radiation</topic><topic>Frequencies</topic><topic>Frequency ranges</topic><topic>Parameters</topic><topic>Photonics</topic><topic>Robustness</topic><topic>Routers</topic><topic>Signal processing</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Jiayu</creatorcontrib><creatorcontrib>Li, Haitao</creatorcontrib><creatorcontrib>Kang, Shijie</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Xie, Biye</creatorcontrib><creatorcontrib>Ling, Fang</creatorcontrib><creatorcontrib>Deng, Ruping</creatorcontrib><creatorcontrib>Wu, Xiaoxiao</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Jiayu</au><au>Li, Haitao</au><au>Kang, Shijie</au><au>Chen, Peng</au><au>Xie, Biye</au><au>Ling, Fang</au><au>Deng, Ruping</au><au>Wu, Xiaoxiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-channel frequency router based on valley-Hall metacrystals</atitle><jtitle>Applied physics letters</jtitle><date>2024-12-09</date><risdate>2024</risdate><volume>125</volume><issue>24</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Topological photonics has revolutionized the manipulation of electromagnetic waves by leveraging various topological phases proposed originally in condensed matter, leading to robust and error-immune signal processing. Despite considerable efforts, a critical challenge remains in devising frequency routers operating at a broadband frequency range with limited crosstalk. Previous designs usually relied on fine-tuning of parameters and are difficult to be integrated efficiently and compactly. Here, targeting the demand for frequency-selective applications in on-chip photonics, we explore a topological approach to photonic frequency router via valley-Hall metacrystals. Diverging from the majority of studies focusing on zigzag interfaces, our research shifts the attention to armchair interfaces within an type-A type-B type-A (ABA) sandwich-like structure, where a single column of type-B unit cells acts as a replacement in the background type-A metacrystal. Essentially, through tuning a single geometric parameter of the type-B unit cells, this configuration gives rise to interface states within a customized frequency band, enabling signal routing with limited crosstalk to meet specified demands. Moreover, this concept is practically demonstrated through a photonic frequency router with three distinct channels, experimentally exhibiting robust wave transmissions with excellent agreement with the design. This investigation manifests possible applications of the armchair interfaces in valley-Hall photonic systems and advances development of photonic devices that are both compact and efficient. Notably, the approach is naturally compatible with on-chip photonics and integration, which could benefit telecommunications and optical computing applications.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0230532</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7258-8913</orcidid><orcidid>https://orcid.org/0000-0003-3183-4975</orcidid><orcidid>https://orcid.org/0009-0009-3515-0969</orcidid><orcidid>https://orcid.org/0009-0007-7028-2487</orcidid><orcidid>https://orcid.org/0000-0002-9468-396X</orcidid><orcidid>https://orcid.org/0000-0002-1515-9546</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2024-12, Vol.125 (24)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_5_0230532
source AIP Journals Complete
subjects Broadband
Columnar structure
Crosstalk
Electromagnetic radiation
Frequencies
Frequency ranges
Parameters
Photonics
Robustness
Routers
Signal processing
Topology
title Multi-channel frequency router based on valley-Hall metacrystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A35%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-channel%20frequency%20router%20based%20on%20valley-Hall%20metacrystals&rft.jtitle=Applied%20physics%20letters&rft.au=Fan,%20Jiayu&rft.date=2024-12-09&rft.volume=125&rft.issue=24&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0230532&rft_dat=%3Cproquest_scita%3E3142698343%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3142698343&rft_id=info:pmid/&rfr_iscdi=true