Deep learning algorithm comparison for creating model for battery life
Lithium-ion battery packs find extensive use in numerous high-power applications, including electric vehicles (EVs) and smart grids, necessitating the implementation of a battery management system (BMS). The integration of Battery Management Systems (BMS) entails the harmonization of both software a...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 3156 |
creator | Somavanshi, Tanishqa Dhanorkar, Devanshu Shinde, Aakash Pawar, Pranav |
description | Lithium-ion battery packs find extensive use in numerous high-power applications, including electric vehicles (EVs) and smart grids, necessitating the implementation of a battery management system (BMS). The integration of Battery Management Systems (BMS) entails the harmonization of both software and hardware elements, which collectively manage tasks like battery state estimation, fault detection, monitoring, and control. |
doi_str_mv | 10.1063/5.0227578 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0227578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115187481</sourcerecordid><originalsourceid>FETCH-LOGICAL-p638-540374c4f53583b8d59384df4c1067c892ea6d688eb2f67bdf0afe5ef4b35f203</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMoWKsH_0HAm7A138kepVoVCl568Bayu2_qlt3NmqSH_nu3H6eB4WFmGIQeKVlQoviLXBDGtNTmCs2olLTQiqprNCOkFAUT_OcW3aW0I4SVWpsZWr0BjLgDF4d22GLXbUNs82-P69CPLrYpDNiHiOsILh-JPjTQnazK5QzxgLvWwz268a5L8HDROdqs3jfLz2L9_fG1fF0Xo-KmkIJwLWrhJZeGV6aRJTei8aKetuvalAycapQxUDGvdNV44jxI8KLi0jPC5-jpHDvG8LeHlO0u7OMwNVpOqaRGC0Mn6vlMpbrN0-ow2DG2vYsHS4k93mSlvdzE_wHcblli</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3115187481</pqid></control><display><type>conference_proceeding</type><title>Deep learning algorithm comparison for creating model for battery life</title><source>AIP Journals Complete</source><creator>Somavanshi, Tanishqa ; Dhanorkar, Devanshu ; Shinde, Aakash ; Pawar, Pranav</creator><contributor>Saxena, Ankur ; Phade, Gayatri M</contributor><creatorcontrib>Somavanshi, Tanishqa ; Dhanorkar, Devanshu ; Shinde, Aakash ; Pawar, Pranav ; Saxena, Ankur ; Phade, Gayatri M</creatorcontrib><description>Lithium-ion battery packs find extensive use in numerous high-power applications, including electric vehicles (EVs) and smart grids, necessitating the implementation of a battery management system (BMS). The integration of Battery Management Systems (BMS) entails the harmonization of both software and hardware elements, which collectively manage tasks like battery state estimation, fault detection, monitoring, and control.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0227578</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Electric vehicles ; Fault detection ; Lithium-ion batteries ; Machine learning ; Management systems ; Power management ; Smart grid ; State estimation</subject><ispartof>AIP conference proceedings, 2024, Vol.3156 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0227578$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,778,782,787,788,792,4500,23917,23918,25127,27911,27912,76139</link.rule.ids></links><search><contributor>Saxena, Ankur</contributor><contributor>Phade, Gayatri M</contributor><creatorcontrib>Somavanshi, Tanishqa</creatorcontrib><creatorcontrib>Dhanorkar, Devanshu</creatorcontrib><creatorcontrib>Shinde, Aakash</creatorcontrib><creatorcontrib>Pawar, Pranav</creatorcontrib><title>Deep learning algorithm comparison for creating model for battery life</title><title>AIP conference proceedings</title><description>Lithium-ion battery packs find extensive use in numerous high-power applications, including electric vehicles (EVs) and smart grids, necessitating the implementation of a battery management system (BMS). The integration of Battery Management Systems (BMS) entails the harmonization of both software and hardware elements, which collectively manage tasks like battery state estimation, fault detection, monitoring, and control.</description><subject>Algorithms</subject><subject>Electric vehicles</subject><subject>Fault detection</subject><subject>Lithium-ion batteries</subject><subject>Machine learning</subject><subject>Management systems</subject><subject>Power management</subject><subject>Smart grid</subject><subject>State estimation</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1LAzEYhIMoWKsH_0HAm7A138kepVoVCl568Bayu2_qlt3NmqSH_nu3H6eB4WFmGIQeKVlQoviLXBDGtNTmCs2olLTQiqprNCOkFAUT_OcW3aW0I4SVWpsZWr0BjLgDF4d22GLXbUNs82-P69CPLrYpDNiHiOsILh-JPjTQnazK5QzxgLvWwz268a5L8HDROdqs3jfLz2L9_fG1fF0Xo-KmkIJwLWrhJZeGV6aRJTei8aKetuvalAycapQxUDGvdNV44jxI8KLi0jPC5-jpHDvG8LeHlO0u7OMwNVpOqaRGC0Mn6vlMpbrN0-ow2DG2vYsHS4k93mSlvdzE_wHcblli</recordid><startdate>20241010</startdate><enddate>20241010</enddate><creator>Somavanshi, Tanishqa</creator><creator>Dhanorkar, Devanshu</creator><creator>Shinde, Aakash</creator><creator>Pawar, Pranav</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20241010</creationdate><title>Deep learning algorithm comparison for creating model for battery life</title><author>Somavanshi, Tanishqa ; Dhanorkar, Devanshu ; Shinde, Aakash ; Pawar, Pranav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p638-540374c4f53583b8d59384df4c1067c892ea6d688eb2f67bdf0afe5ef4b35f203</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Electric vehicles</topic><topic>Fault detection</topic><topic>Lithium-ion batteries</topic><topic>Machine learning</topic><topic>Management systems</topic><topic>Power management</topic><topic>Smart grid</topic><topic>State estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Somavanshi, Tanishqa</creatorcontrib><creatorcontrib>Dhanorkar, Devanshu</creatorcontrib><creatorcontrib>Shinde, Aakash</creatorcontrib><creatorcontrib>Pawar, Pranav</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Somavanshi, Tanishqa</au><au>Dhanorkar, Devanshu</au><au>Shinde, Aakash</au><au>Pawar, Pranav</au><au>Saxena, Ankur</au><au>Phade, Gayatri M</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Deep learning algorithm comparison for creating model for battery life</atitle><btitle>AIP conference proceedings</btitle><date>2024-10-10</date><risdate>2024</risdate><volume>3156</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Lithium-ion battery packs find extensive use in numerous high-power applications, including electric vehicles (EVs) and smart grids, necessitating the implementation of a battery management system (BMS). The integration of Battery Management Systems (BMS) entails the harmonization of both software and hardware elements, which collectively manage tasks like battery state estimation, fault detection, monitoring, and control.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0227578</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2024, Vol.3156 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0227578 |
source | AIP Journals Complete |
subjects | Algorithms Electric vehicles Fault detection Lithium-ion batteries Machine learning Management systems Power management Smart grid State estimation |
title | Deep learning algorithm comparison for creating model for battery life |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A08%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Deep%20learning%20algorithm%20comparison%20for%20creating%20model%20for%20battery%20life&rft.btitle=AIP%20conference%20proceedings&rft.au=Somavanshi,%20Tanishqa&rft.date=2024-10-10&rft.volume=3156&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0227578&rft_dat=%3Cproquest_scita%3E3115187481%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115187481&rft_id=info:pmid/&rfr_iscdi=true |