Deep learning algorithm comparison for creating model for battery life

Lithium-ion battery packs find extensive use in numerous high-power applications, including electric vehicles (EVs) and smart grids, necessitating the implementation of a battery management system (BMS). The integration of Battery Management Systems (BMS) entails the harmonization of both software a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Somavanshi, Tanishqa, Dhanorkar, Devanshu, Shinde, Aakash, Pawar, Pranav
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3156
creator Somavanshi, Tanishqa
Dhanorkar, Devanshu
Shinde, Aakash
Pawar, Pranav
description Lithium-ion battery packs find extensive use in numerous high-power applications, including electric vehicles (EVs) and smart grids, necessitating the implementation of a battery management system (BMS). The integration of Battery Management Systems (BMS) entails the harmonization of both software and hardware elements, which collectively manage tasks like battery state estimation, fault detection, monitoring, and control.
doi_str_mv 10.1063/5.0227578
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0227578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115187481</sourcerecordid><originalsourceid>FETCH-LOGICAL-p638-540374c4f53583b8d59384df4c1067c892ea6d688eb2f67bdf0afe5ef4b35f203</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMoWKsH_0HAm7A138kepVoVCl568Bayu2_qlt3NmqSH_nu3H6eB4WFmGIQeKVlQoviLXBDGtNTmCs2olLTQiqprNCOkFAUT_OcW3aW0I4SVWpsZWr0BjLgDF4d22GLXbUNs82-P69CPLrYpDNiHiOsILh-JPjTQnazK5QzxgLvWwz268a5L8HDROdqs3jfLz2L9_fG1fF0Xo-KmkIJwLWrhJZeGV6aRJTei8aKetuvalAycapQxUDGvdNV44jxI8KLi0jPC5-jpHDvG8LeHlO0u7OMwNVpOqaRGC0Mn6vlMpbrN0-ow2DG2vYsHS4k93mSlvdzE_wHcblli</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3115187481</pqid></control><display><type>conference_proceeding</type><title>Deep learning algorithm comparison for creating model for battery life</title><source>AIP Journals Complete</source><creator>Somavanshi, Tanishqa ; Dhanorkar, Devanshu ; Shinde, Aakash ; Pawar, Pranav</creator><contributor>Saxena, Ankur ; Phade, Gayatri M</contributor><creatorcontrib>Somavanshi, Tanishqa ; Dhanorkar, Devanshu ; Shinde, Aakash ; Pawar, Pranav ; Saxena, Ankur ; Phade, Gayatri M</creatorcontrib><description>Lithium-ion battery packs find extensive use in numerous high-power applications, including electric vehicles (EVs) and smart grids, necessitating the implementation of a battery management system (BMS). The integration of Battery Management Systems (BMS) entails the harmonization of both software and hardware elements, which collectively manage tasks like battery state estimation, fault detection, monitoring, and control.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0227578</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Electric vehicles ; Fault detection ; Lithium-ion batteries ; Machine learning ; Management systems ; Power management ; Smart grid ; State estimation</subject><ispartof>AIP conference proceedings, 2024, Vol.3156 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0227578$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,778,782,787,788,792,4500,23917,23918,25127,27911,27912,76139</link.rule.ids></links><search><contributor>Saxena, Ankur</contributor><contributor>Phade, Gayatri M</contributor><creatorcontrib>Somavanshi, Tanishqa</creatorcontrib><creatorcontrib>Dhanorkar, Devanshu</creatorcontrib><creatorcontrib>Shinde, Aakash</creatorcontrib><creatorcontrib>Pawar, Pranav</creatorcontrib><title>Deep learning algorithm comparison for creating model for battery life</title><title>AIP conference proceedings</title><description>Lithium-ion battery packs find extensive use in numerous high-power applications, including electric vehicles (EVs) and smart grids, necessitating the implementation of a battery management system (BMS). The integration of Battery Management Systems (BMS) entails the harmonization of both software and hardware elements, which collectively manage tasks like battery state estimation, fault detection, monitoring, and control.</description><subject>Algorithms</subject><subject>Electric vehicles</subject><subject>Fault detection</subject><subject>Lithium-ion batteries</subject><subject>Machine learning</subject><subject>Management systems</subject><subject>Power management</subject><subject>Smart grid</subject><subject>State estimation</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1LAzEYhIMoWKsH_0HAm7A138kepVoVCl568Bayu2_qlt3NmqSH_nu3H6eB4WFmGIQeKVlQoviLXBDGtNTmCs2olLTQiqprNCOkFAUT_OcW3aW0I4SVWpsZWr0BjLgDF4d22GLXbUNs82-P69CPLrYpDNiHiOsILh-JPjTQnazK5QzxgLvWwz268a5L8HDROdqs3jfLz2L9_fG1fF0Xo-KmkIJwLWrhJZeGV6aRJTei8aKetuvalAycapQxUDGvdNV44jxI8KLi0jPC5-jpHDvG8LeHlO0u7OMwNVpOqaRGC0Mn6vlMpbrN0-ow2DG2vYsHS4k93mSlvdzE_wHcblli</recordid><startdate>20241010</startdate><enddate>20241010</enddate><creator>Somavanshi, Tanishqa</creator><creator>Dhanorkar, Devanshu</creator><creator>Shinde, Aakash</creator><creator>Pawar, Pranav</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20241010</creationdate><title>Deep learning algorithm comparison for creating model for battery life</title><author>Somavanshi, Tanishqa ; Dhanorkar, Devanshu ; Shinde, Aakash ; Pawar, Pranav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p638-540374c4f53583b8d59384df4c1067c892ea6d688eb2f67bdf0afe5ef4b35f203</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Electric vehicles</topic><topic>Fault detection</topic><topic>Lithium-ion batteries</topic><topic>Machine learning</topic><topic>Management systems</topic><topic>Power management</topic><topic>Smart grid</topic><topic>State estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Somavanshi, Tanishqa</creatorcontrib><creatorcontrib>Dhanorkar, Devanshu</creatorcontrib><creatorcontrib>Shinde, Aakash</creatorcontrib><creatorcontrib>Pawar, Pranav</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Somavanshi, Tanishqa</au><au>Dhanorkar, Devanshu</au><au>Shinde, Aakash</au><au>Pawar, Pranav</au><au>Saxena, Ankur</au><au>Phade, Gayatri M</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Deep learning algorithm comparison for creating model for battery life</atitle><btitle>AIP conference proceedings</btitle><date>2024-10-10</date><risdate>2024</risdate><volume>3156</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Lithium-ion battery packs find extensive use in numerous high-power applications, including electric vehicles (EVs) and smart grids, necessitating the implementation of a battery management system (BMS). The integration of Battery Management Systems (BMS) entails the harmonization of both software and hardware elements, which collectively manage tasks like battery state estimation, fault detection, monitoring, and control.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0227578</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.3156 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0227578
source AIP Journals Complete
subjects Algorithms
Electric vehicles
Fault detection
Lithium-ion batteries
Machine learning
Management systems
Power management
Smart grid
State estimation
title Deep learning algorithm comparison for creating model for battery life
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A08%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Deep%20learning%20algorithm%20comparison%20for%20creating%20model%20for%20battery%20life&rft.btitle=AIP%20conference%20proceedings&rft.au=Somavanshi,%20Tanishqa&rft.date=2024-10-10&rft.volume=3156&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0227578&rft_dat=%3Cproquest_scita%3E3115187481%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115187481&rft_id=info:pmid/&rfr_iscdi=true