A hybrid classifier for postharvest grading of Nutmeg seeds

Nutmeg seed quality grading is an essential process that plays a crucial role in ensuring the consistency and safety of nutmeg-based products. It helps to promote fair trade practices and sustainability in the nutmeg industry, making it a vital component of the global spice trade. The seed quality g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sudheema, K., Shaji, Abin, Sunil, Arya, Vysakh, K. T., Babu, P. Emmanuel, Rajan, Thomas P., Eldhose, K. A., George, Deena
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3134
creator Sudheema, K.
Shaji, Abin
Sunil, Arya
Vysakh, K. T.
Babu, P. Emmanuel
Rajan, Thomas P.
Eldhose, K. A.
George, Deena
description Nutmeg seed quality grading is an essential process that plays a crucial role in ensuring the consistency and safety of nutmeg-based products. It helps to promote fair trade practices and sustainability in the nutmeg industry, making it a vital component of the global spice trade. The seed quality grading primarily considers various characteristics of seed images. Shape, color, and texture are among the key image attributes that are extracted for analysis. The features that are created rely heavily on manual labor and are somewhat limited in scope. As a result, these features often do not perform well when applied to a broader set of data. This can lead to significant discrepancies in the final discrimination results. In the present research, a complex Convolutional Neural Network (CNN) was proposed, which integrates a classifier based on Support Vector Machine (SVM). The primary goal of this approach is to improve the accuracy of classifying dried nutmegs into either good or bad categories.
doi_str_mv 10.1063/5.0227526
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0227526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3124169435</sourcerecordid><originalsourceid>FETCH-LOGICAL-p636-f608568b4ab64fd1e8fbfb88a34867968754592ca84904ffb555ea5bf69a0b653</originalsourceid><addsrcrecordid>eNotkE1LAzEURYMoWKsL_0HAnTA1X-9NgqtSrApFN124C0knaVPazphMhf57W9rV3RzuvRxCHjkbcYbyBUZMiBoEXpEBB-BVjRyvyYAxoyqh5M8tuStlzZgwda0H5HVMVwefU0MXG1dKiilkGttMu7b0K5f_QunpMrsm7Za0jfRr32_DkpYQmnJPbqLblPBwySGZT9_mk49q9v3-ORnPqg4lVhGZBtReOY8qNjzo6KPX2kmlsTaoa1BgxMJpZZiK0QNAcOAjGsc8ghySp3Ntl9vf_fGPXbf7vDsuWsmF4miUPFHPZ6osUu_61O5sl9PW5YPlzJ7cWLAXN_IfLHRU2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3124169435</pqid></control><display><type>conference_proceeding</type><title>A hybrid classifier for postharvest grading of Nutmeg seeds</title><source>AIP Journals Complete</source><creator>Sudheema, K. ; Shaji, Abin ; Sunil, Arya ; Vysakh, K. T. ; Babu, P. Emmanuel ; Rajan, Thomas P. ; Eldhose, K. A. ; George, Deena</creator><contributor>K, Mathew ; Madanan, Umesh ; Rajendran, Chandrasekharan ; Kuriachen, Basil</contributor><creatorcontrib>Sudheema, K. ; Shaji, Abin ; Sunil, Arya ; Vysakh, K. T. ; Babu, P. Emmanuel ; Rajan, Thomas P. ; Eldhose, K. A. ; George, Deena ; K, Mathew ; Madanan, Umesh ; Rajendran, Chandrasekharan ; Kuriachen, Basil</creatorcontrib><description>Nutmeg seed quality grading is an essential process that plays a crucial role in ensuring the consistency and safety of nutmeg-based products. It helps to promote fair trade practices and sustainability in the nutmeg industry, making it a vital component of the global spice trade. The seed quality grading primarily considers various characteristics of seed images. Shape, color, and texture are among the key image attributes that are extracted for analysis. The features that are created rely heavily on manual labor and are somewhat limited in scope. As a result, these features often do not perform well when applied to a broader set of data. This can lead to significant discrepancies in the final discrimination results. In the present research, a complex Convolutional Neural Network (CNN) was proposed, which integrates a classifier based on Support Vector Machine (SVM). The primary goal of this approach is to improve the accuracy of classifying dried nutmegs into either good or bad categories.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0227526</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Artificial neural networks ; Image quality ; Nutmeg ; Physical work ; Support vector machines</subject><ispartof>AIP conference proceedings, 2024, Vol.3134 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0227526$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76126</link.rule.ids></links><search><contributor>K, Mathew</contributor><contributor>Madanan, Umesh</contributor><contributor>Rajendran, Chandrasekharan</contributor><contributor>Kuriachen, Basil</contributor><creatorcontrib>Sudheema, K.</creatorcontrib><creatorcontrib>Shaji, Abin</creatorcontrib><creatorcontrib>Sunil, Arya</creatorcontrib><creatorcontrib>Vysakh, K. T.</creatorcontrib><creatorcontrib>Babu, P. Emmanuel</creatorcontrib><creatorcontrib>Rajan, Thomas P.</creatorcontrib><creatorcontrib>Eldhose, K. A.</creatorcontrib><creatorcontrib>George, Deena</creatorcontrib><title>A hybrid classifier for postharvest grading of Nutmeg seeds</title><title>AIP conference proceedings</title><description>Nutmeg seed quality grading is an essential process that plays a crucial role in ensuring the consistency and safety of nutmeg-based products. It helps to promote fair trade practices and sustainability in the nutmeg industry, making it a vital component of the global spice trade. The seed quality grading primarily considers various characteristics of seed images. Shape, color, and texture are among the key image attributes that are extracted for analysis. The features that are created rely heavily on manual labor and are somewhat limited in scope. As a result, these features often do not perform well when applied to a broader set of data. This can lead to significant discrepancies in the final discrimination results. In the present research, a complex Convolutional Neural Network (CNN) was proposed, which integrates a classifier based on Support Vector Machine (SVM). The primary goal of this approach is to improve the accuracy of classifying dried nutmegs into either good or bad categories.</description><subject>Artificial neural networks</subject><subject>Image quality</subject><subject>Nutmeg</subject><subject>Physical work</subject><subject>Support vector machines</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1LAzEURYMoWKsL_0HAnTA1X-9NgqtSrApFN124C0knaVPazphMhf57W9rV3RzuvRxCHjkbcYbyBUZMiBoEXpEBB-BVjRyvyYAxoyqh5M8tuStlzZgwda0H5HVMVwefU0MXG1dKiilkGttMu7b0K5f_QunpMrsm7Za0jfRr32_DkpYQmnJPbqLblPBwySGZT9_mk49q9v3-ORnPqg4lVhGZBtReOY8qNjzo6KPX2kmlsTaoa1BgxMJpZZiK0QNAcOAjGsc8ghySp3Ntl9vf_fGPXbf7vDsuWsmF4miUPFHPZ6osUu_61O5sl9PW5YPlzJ7cWLAXN_IfLHRU2g</recordid><startdate>20241105</startdate><enddate>20241105</enddate><creator>Sudheema, K.</creator><creator>Shaji, Abin</creator><creator>Sunil, Arya</creator><creator>Vysakh, K. T.</creator><creator>Babu, P. Emmanuel</creator><creator>Rajan, Thomas P.</creator><creator>Eldhose, K. A.</creator><creator>George, Deena</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20241105</creationdate><title>A hybrid classifier for postharvest grading of Nutmeg seeds</title><author>Sudheema, K. ; Shaji, Abin ; Sunil, Arya ; Vysakh, K. T. ; Babu, P. Emmanuel ; Rajan, Thomas P. ; Eldhose, K. A. ; George, Deena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p636-f608568b4ab64fd1e8fbfb88a34867968754592ca84904ffb555ea5bf69a0b653</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Image quality</topic><topic>Nutmeg</topic><topic>Physical work</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sudheema, K.</creatorcontrib><creatorcontrib>Shaji, Abin</creatorcontrib><creatorcontrib>Sunil, Arya</creatorcontrib><creatorcontrib>Vysakh, K. T.</creatorcontrib><creatorcontrib>Babu, P. Emmanuel</creatorcontrib><creatorcontrib>Rajan, Thomas P.</creatorcontrib><creatorcontrib>Eldhose, K. A.</creatorcontrib><creatorcontrib>George, Deena</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sudheema, K.</au><au>Shaji, Abin</au><au>Sunil, Arya</au><au>Vysakh, K. T.</au><au>Babu, P. Emmanuel</au><au>Rajan, Thomas P.</au><au>Eldhose, K. A.</au><au>George, Deena</au><au>K, Mathew</au><au>Madanan, Umesh</au><au>Rajendran, Chandrasekharan</au><au>Kuriachen, Basil</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A hybrid classifier for postharvest grading of Nutmeg seeds</atitle><btitle>AIP conference proceedings</btitle><date>2024-11-05</date><risdate>2024</risdate><volume>3134</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Nutmeg seed quality grading is an essential process that plays a crucial role in ensuring the consistency and safety of nutmeg-based products. It helps to promote fair trade practices and sustainability in the nutmeg industry, making it a vital component of the global spice trade. The seed quality grading primarily considers various characteristics of seed images. Shape, color, and texture are among the key image attributes that are extracted for analysis. The features that are created rely heavily on manual labor and are somewhat limited in scope. As a result, these features often do not perform well when applied to a broader set of data. This can lead to significant discrepancies in the final discrimination results. In the present research, a complex Convolutional Neural Network (CNN) was proposed, which integrates a classifier based on Support Vector Machine (SVM). The primary goal of this approach is to improve the accuracy of classifying dried nutmegs into either good or bad categories.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0227526</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.3134 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0227526
source AIP Journals Complete
subjects Artificial neural networks
Image quality
Nutmeg
Physical work
Support vector machines
title A hybrid classifier for postharvest grading of Nutmeg seeds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A47%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20hybrid%20classifier%20for%20postharvest%20grading%20of%20Nutmeg%20seeds&rft.btitle=AIP%20conference%20proceedings&rft.au=Sudheema,%20K.&rft.date=2024-11-05&rft.volume=3134&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0227526&rft_dat=%3Cproquest_scita%3E3124169435%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124169435&rft_id=info:pmid/&rfr_iscdi=true