Unique common fixed point theorem using simulation function fulfilling common limit in the range property
In the current research paper we have defined rationalized Ξ-contraction for four mappings. In b-metric, using simulation function, for rationalized Ξ-contraction fulfilling the weakly compatible condition for four mappings in pairs, fulfilling conjoint limit range property, a unique common fixed po...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 3139 |
creator | Aserkar, Anushree A. Gandhi, Manjusha P. Chib, Shiney |
description | In the current research paper we have defined rationalized Ξ-contraction for four mappings. In b-metric, using simulation function, for rationalized Ξ-contraction fulfilling the weakly compatible condition for four mappings in pairs, fulfilling conjoint limit range property, a unique common fixed point theorem has been proved. The conclusion has been tested by not using the situation of completeness for b-metric space. The outcome is an improvement and generalization of [2, 4, 6] existing in metric space and b-metric spaces. To back-up the result a supporting example is also discussed. |
doi_str_mv | 10.1063/5.0224561 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0224561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3089650324</sourcerecordid><originalsourceid>FETCH-LOGICAL-p631-f451129ff2e11339c224e940198f145c897fad62451bd40d355e44f8c1d4c42b3</originalsourceid><addsrcrecordid>eNotkF9LwzAUxYMoOKcPfoOAb0Jnbv61eZShUxj4MsG30qXJzGjTmqTgvr2t69O9cM-5h99B6B7ICohkT2JFKOVCwgVagBCQ5RLkJVoQonhGOfu6RjcxHgmhKs-LBXKf3v0MBuuubTuPrfs1Ne475xNO36YLpsVDdP6Ao2uHpkpuEg1ez0tjXdNM59nfuNYl7PxkxqHyB4P70PUmpNMturJVE83dPJdo9_qyW79l24_N-_p5m_WSQWa5AKDKWmoAGFN6pDGKE1CFBS50oXJb1XJEhH3NSc2EMJzbQkPNNad7tkQP57dj7ggWU3nshuDHxJKRQklB2FjDEj2eVVG79E9V9sG1VTiVQMqpyVKUc5PsD7RFZlc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3089650324</pqid></control><display><type>conference_proceeding</type><title>Unique common fixed point theorem using simulation function fulfilling common limit in the range property</title><source>AIP Journals Complete</source><creator>Aserkar, Anushree A. ; Gandhi, Manjusha P. ; Chib, Shiney</creator><contributor>Butey, Bhavana ; Raut, Ekta ; Thete, Rupali ; Thakran, Bhagwat ; Deshpande, Archana ; Rajvaidya, Bhakti ; Nandekar, Kamlakar</contributor><creatorcontrib>Aserkar, Anushree A. ; Gandhi, Manjusha P. ; Chib, Shiney ; Butey, Bhavana ; Raut, Ekta ; Thete, Rupali ; Thakran, Bhagwat ; Deshpande, Archana ; Rajvaidya, Bhakti ; Nandekar, Kamlakar</creatorcontrib><description>In the current research paper we have defined rationalized Ξ-contraction for four mappings. In b-metric, using simulation function, for rationalized Ξ-contraction fulfilling the weakly compatible condition for four mappings in pairs, fulfilling conjoint limit range property, a unique common fixed point theorem has been proved. The conclusion has been tested by not using the situation of completeness for b-metric space. The outcome is an improvement and generalization of [2, 4, 6] existing in metric space and b-metric spaces. To back-up the result a supporting example is also discussed.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0224561</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Fixed points (mathematics) ; Metric space ; Theorems</subject><ispartof>AIP conference proceedings, 2024, Vol.3139 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0224561$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76353</link.rule.ids></links><search><contributor>Butey, Bhavana</contributor><contributor>Raut, Ekta</contributor><contributor>Thete, Rupali</contributor><contributor>Thakran, Bhagwat</contributor><contributor>Deshpande, Archana</contributor><contributor>Rajvaidya, Bhakti</contributor><contributor>Nandekar, Kamlakar</contributor><creatorcontrib>Aserkar, Anushree A.</creatorcontrib><creatorcontrib>Gandhi, Manjusha P.</creatorcontrib><creatorcontrib>Chib, Shiney</creatorcontrib><title>Unique common fixed point theorem using simulation function fulfilling common limit in the range property</title><title>AIP conference proceedings</title><description>In the current research paper we have defined rationalized Ξ-contraction for four mappings. In b-metric, using simulation function, for rationalized Ξ-contraction fulfilling the weakly compatible condition for four mappings in pairs, fulfilling conjoint limit range property, a unique common fixed point theorem has been proved. The conclusion has been tested by not using the situation of completeness for b-metric space. The outcome is an improvement and generalization of [2, 4, 6] existing in metric space and b-metric spaces. To back-up the result a supporting example is also discussed.</description><subject>Fixed points (mathematics)</subject><subject>Metric space</subject><subject>Theorems</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkF9LwzAUxYMoOKcPfoOAb0Jnbv61eZShUxj4MsG30qXJzGjTmqTgvr2t69O9cM-5h99B6B7ICohkT2JFKOVCwgVagBCQ5RLkJVoQonhGOfu6RjcxHgmhKs-LBXKf3v0MBuuubTuPrfs1Ne475xNO36YLpsVDdP6Ao2uHpkpuEg1ez0tjXdNM59nfuNYl7PxkxqHyB4P70PUmpNMturJVE83dPJdo9_qyW79l24_N-_p5m_WSQWa5AKDKWmoAGFN6pDGKE1CFBS50oXJb1XJEhH3NSc2EMJzbQkPNNad7tkQP57dj7ggWU3nshuDHxJKRQklB2FjDEj2eVVG79E9V9sG1VTiVQMqpyVKUc5PsD7RFZlc</recordid><startdate>20240806</startdate><enddate>20240806</enddate><creator>Aserkar, Anushree A.</creator><creator>Gandhi, Manjusha P.</creator><creator>Chib, Shiney</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240806</creationdate><title>Unique common fixed point theorem using simulation function fulfilling common limit in the range property</title><author>Aserkar, Anushree A. ; Gandhi, Manjusha P. ; Chib, Shiney</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p631-f451129ff2e11339c224e940198f145c897fad62451bd40d355e44f8c1d4c42b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Fixed points (mathematics)</topic><topic>Metric space</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aserkar, Anushree A.</creatorcontrib><creatorcontrib>Gandhi, Manjusha P.</creatorcontrib><creatorcontrib>Chib, Shiney</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aserkar, Anushree A.</au><au>Gandhi, Manjusha P.</au><au>Chib, Shiney</au><au>Butey, Bhavana</au><au>Raut, Ekta</au><au>Thete, Rupali</au><au>Thakran, Bhagwat</au><au>Deshpande, Archana</au><au>Rajvaidya, Bhakti</au><au>Nandekar, Kamlakar</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Unique common fixed point theorem using simulation function fulfilling common limit in the range property</atitle><btitle>AIP conference proceedings</btitle><date>2024-08-06</date><risdate>2024</risdate><volume>3139</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In the current research paper we have defined rationalized Ξ-contraction for four mappings. In b-metric, using simulation function, for rationalized Ξ-contraction fulfilling the weakly compatible condition for four mappings in pairs, fulfilling conjoint limit range property, a unique common fixed point theorem has been proved. The conclusion has been tested by not using the situation of completeness for b-metric space. The outcome is an improvement and generalization of [2, 4, 6] existing in metric space and b-metric spaces. To back-up the result a supporting example is also discussed.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0224561</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2024, Vol.3139 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0224561 |
source | AIP Journals Complete |
subjects | Fixed points (mathematics) Metric space Theorems |
title | Unique common fixed point theorem using simulation function fulfilling common limit in the range property |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T04%3A25%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Unique%20common%20fixed%20point%20theorem%20using%20simulation%20function%20fulfilling%20common%20limit%20in%20the%20range%20property&rft.btitle=AIP%20conference%20proceedings&rft.au=Aserkar,%20Anushree%20A.&rft.date=2024-08-06&rft.volume=3139&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0224561&rft_dat=%3Cproquest_scita%3E3089650324%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3089650324&rft_id=info:pmid/&rfr_iscdi=true |