Pattern dynamics of networked epidemic model with higher-order infections
Current research on pattern formations in networked reaction–diffusion (RD) systems predominantly focuses on the impacts of diffusion heterogeneity between nodes, often overlooking the contact heterogeneity between individuals within nodes in the reaction terms. In this paper, we establish a network...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2024-10, Vol.34 (10) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 34 |
creator | Guo, Jiaojiao Li, Xing He, Runzi Luo, Xiaofeng Guo, Zun-Guang Sun, Gui-Quan |
description | Current research on pattern formations in networked reaction–diffusion (RD) systems predominantly focuses on the impacts of diffusion heterogeneity between nodes, often overlooking the contact heterogeneity between individuals within nodes in the reaction terms. In this paper, we establish a networked RD model incorporating infection through higher-order interaction in simplicial complexes in the reaction terms. Through theoretical and numerical analysis, we find that these higher-order interactions may induce Turing instability in the system. Notably, the relationship between the size of the Turing instability range and the average 2-simplices degree within nodes can be approximated by a quadratic function. Additionally, as the average 2-simplices degree increases, the amplitude of the patterns exhibits three distinct trends: increasing, decreasing, and initially increasing then decreasing, while the average infection density increases consistently. We then provide a possible explanation for these observations. Our findings offer new insights into the effects of contact heterogeneity within nodes on networked pattern formations, thereby informing the development of epidemic prevention and control measures. |
doi_str_mv | 10.1063/5.0224187 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0224187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123905968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-218f4a547e6cd69f7a059b71cecea49c27de9486bb003e3c968c8aae97237fc3</originalsourceid><addsrcrecordid>eNp90E1LwzAYB_AgipsvB7-AFLyo0JmXpkmOMnwZDPSwe0nTpy5zbWbSMvbtTdn04MFTHsKP__PwR-iK4AnBOXvgE0xpRqQ4QmOCpUpFLunxMPMsJRzjEToLYYUxJpTxUzRiKotc8jGaveuuA98m1a7VjTUhcXXSQrd1_hOqBDa2gvidNK6CdbK13TJZ2o8l-NT5Cnxi2xpMZ10bLtBJrdcBLg_vOVo8Py2mr-n87WU2fZynhjLZpZTIOtM8E5CbKle10JirUhADBnSmDBUVqEzmZYkxA2ZULo3UGpSgTNSGnaPbfezGu68eQlc0NhhYr3ULrg8FIxRjLjAnkd78oSvX-zYeNyim4uJcRnW3V8a7EDzUxcbbRvtdQXAx1Fvw4lBvtNeHxL5soPqVP31GcL8HwdhOD738k_YNLX-BZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123905968</pqid></control><display><type>article</type><title>Pattern dynamics of networked epidemic model with higher-order infections</title><source>AIP Journals Complete</source><creator>Guo, Jiaojiao ; Li, Xing ; He, Runzi ; Luo, Xiaofeng ; Guo, Zun-Guang ; Sun, Gui-Quan</creator><creatorcontrib>Guo, Jiaojiao ; Li, Xing ; He, Runzi ; Luo, Xiaofeng ; Guo, Zun-Guang ; Sun, Gui-Quan</creatorcontrib><description>Current research on pattern formations in networked reaction–diffusion (RD) systems predominantly focuses on the impacts of diffusion heterogeneity between nodes, often overlooking the contact heterogeneity between individuals within nodes in the reaction terms. In this paper, we establish a networked RD model incorporating infection through higher-order interaction in simplicial complexes in the reaction terms. Through theoretical and numerical analysis, we find that these higher-order interactions may induce Turing instability in the system. Notably, the relationship between the size of the Turing instability range and the average 2-simplices degree within nodes can be approximated by a quadratic function. Additionally, as the average 2-simplices degree increases, the amplitude of the patterns exhibits three distinct trends: increasing, decreasing, and initially increasing then decreasing, while the average infection density increases consistently. We then provide a possible explanation for these observations. Our findings offer new insights into the effects of contact heterogeneity within nodes on networked pattern formations, thereby informing the development of epidemic prevention and control measures.</description><identifier>ISSN: 1054-1500</identifier><identifier>ISSN: 1089-7682</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/5.0224187</identifier><identifier>PMID: 39441885</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Disease control ; Epidemics ; Heterogeneity ; Nodes ; Numerical analysis ; Quadratic equations</subject><ispartof>Chaos (Woodbury, N.Y.), 2024-10, Vol.34 (10)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-218f4a547e6cd69f7a059b71cecea49c27de9486bb003e3c968c8aae97237fc3</cites><orcidid>0009-0001-9472-1698 ; 0000-0002-1831-1603 ; 0000-0003-4762-0568</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,795,4513,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39441885$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Jiaojiao</creatorcontrib><creatorcontrib>Li, Xing</creatorcontrib><creatorcontrib>He, Runzi</creatorcontrib><creatorcontrib>Luo, Xiaofeng</creatorcontrib><creatorcontrib>Guo, Zun-Guang</creatorcontrib><creatorcontrib>Sun, Gui-Quan</creatorcontrib><title>Pattern dynamics of networked epidemic model with higher-order infections</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>Current research on pattern formations in networked reaction–diffusion (RD) systems predominantly focuses on the impacts of diffusion heterogeneity between nodes, often overlooking the contact heterogeneity between individuals within nodes in the reaction terms. In this paper, we establish a networked RD model incorporating infection through higher-order interaction in simplicial complexes in the reaction terms. Through theoretical and numerical analysis, we find that these higher-order interactions may induce Turing instability in the system. Notably, the relationship between the size of the Turing instability range and the average 2-simplices degree within nodes can be approximated by a quadratic function. Additionally, as the average 2-simplices degree increases, the amplitude of the patterns exhibits three distinct trends: increasing, decreasing, and initially increasing then decreasing, while the average infection density increases consistently. We then provide a possible explanation for these observations. Our findings offer new insights into the effects of contact heterogeneity within nodes on networked pattern formations, thereby informing the development of epidemic prevention and control measures.</description><subject>Disease control</subject><subject>Epidemics</subject><subject>Heterogeneity</subject><subject>Nodes</subject><subject>Numerical analysis</subject><subject>Quadratic equations</subject><issn>1054-1500</issn><issn>1089-7682</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90E1LwzAYB_AgipsvB7-AFLyo0JmXpkmOMnwZDPSwe0nTpy5zbWbSMvbtTdn04MFTHsKP__PwR-iK4AnBOXvgE0xpRqQ4QmOCpUpFLunxMPMsJRzjEToLYYUxJpTxUzRiKotc8jGaveuuA98m1a7VjTUhcXXSQrd1_hOqBDa2gvidNK6CdbK13TJZ2o8l-NT5Cnxi2xpMZ10bLtBJrdcBLg_vOVo8Py2mr-n87WU2fZynhjLZpZTIOtM8E5CbKle10JirUhADBnSmDBUVqEzmZYkxA2ZULo3UGpSgTNSGnaPbfezGu68eQlc0NhhYr3ULrg8FIxRjLjAnkd78oSvX-zYeNyim4uJcRnW3V8a7EDzUxcbbRvtdQXAx1Fvw4lBvtNeHxL5soPqVP31GcL8HwdhOD738k_YNLX-BZg</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Guo, Jiaojiao</creator><creator>Li, Xing</creator><creator>He, Runzi</creator><creator>Luo, Xiaofeng</creator><creator>Guo, Zun-Guang</creator><creator>Sun, Gui-Quan</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0001-9472-1698</orcidid><orcidid>https://orcid.org/0000-0002-1831-1603</orcidid><orcidid>https://orcid.org/0000-0003-4762-0568</orcidid></search><sort><creationdate>202410</creationdate><title>Pattern dynamics of networked epidemic model with higher-order infections</title><author>Guo, Jiaojiao ; Li, Xing ; He, Runzi ; Luo, Xiaofeng ; Guo, Zun-Guang ; Sun, Gui-Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-218f4a547e6cd69f7a059b71cecea49c27de9486bb003e3c968c8aae97237fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Disease control</topic><topic>Epidemics</topic><topic>Heterogeneity</topic><topic>Nodes</topic><topic>Numerical analysis</topic><topic>Quadratic equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Jiaojiao</creatorcontrib><creatorcontrib>Li, Xing</creatorcontrib><creatorcontrib>He, Runzi</creatorcontrib><creatorcontrib>Luo, Xiaofeng</creatorcontrib><creatorcontrib>Guo, Zun-Guang</creatorcontrib><creatorcontrib>Sun, Gui-Quan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Jiaojiao</au><au>Li, Xing</au><au>He, Runzi</au><au>Luo, Xiaofeng</au><au>Guo, Zun-Guang</au><au>Sun, Gui-Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pattern dynamics of networked epidemic model with higher-order infections</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2024-10</date><risdate>2024</risdate><volume>34</volume><issue>10</issue><issn>1054-1500</issn><issn>1089-7682</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>Current research on pattern formations in networked reaction–diffusion (RD) systems predominantly focuses on the impacts of diffusion heterogeneity between nodes, often overlooking the contact heterogeneity between individuals within nodes in the reaction terms. In this paper, we establish a networked RD model incorporating infection through higher-order interaction in simplicial complexes in the reaction terms. Through theoretical and numerical analysis, we find that these higher-order interactions may induce Turing instability in the system. Notably, the relationship between the size of the Turing instability range and the average 2-simplices degree within nodes can be approximated by a quadratic function. Additionally, as the average 2-simplices degree increases, the amplitude of the patterns exhibits three distinct trends: increasing, decreasing, and initially increasing then decreasing, while the average infection density increases consistently. We then provide a possible explanation for these observations. Our findings offer new insights into the effects of contact heterogeneity within nodes on networked pattern formations, thereby informing the development of epidemic prevention and control measures.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>39441885</pmid><doi>10.1063/5.0224187</doi><tpages>15</tpages><orcidid>https://orcid.org/0009-0001-9472-1698</orcidid><orcidid>https://orcid.org/0000-0002-1831-1603</orcidid><orcidid>https://orcid.org/0000-0003-4762-0568</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 2024-10, Vol.34 (10) |
issn | 1054-1500 1089-7682 1089-7682 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0224187 |
source | AIP Journals Complete |
subjects | Disease control Epidemics Heterogeneity Nodes Numerical analysis Quadratic equations |
title | Pattern dynamics of networked epidemic model with higher-order infections |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T03%3A49%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pattern%20dynamics%20of%20networked%20epidemic%20model%20with%20higher-order%20infections&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Guo,%20Jiaojiao&rft.date=2024-10&rft.volume=34&rft.issue=10&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/5.0224187&rft_dat=%3Cproquest_scita%3E3123905968%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123905968&rft_id=info:pmid/39441885&rfr_iscdi=true |