Unraveling the enhanced sodium-storage mechanism in a strongly bonded 2D honeycomb borophene/boron phosphide heterostructure
The growing modern demand for battery capacity is driving the development of high-capacity metal-ion battery anodes for future energy storage. Two-dimensional (2D) material-based heterostructures have shown advantages as alternative anodes due to their enhanced adsorption capacity. The lightweight n...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2024-09, Vol.125 (14) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 14 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 125 |
creator | Fan, Junming Chen, Haiyuan Niu, Xiaobin |
description | The growing modern demand for battery capacity is driving the development of high-capacity metal-ion battery anodes for future energy storage. Two-dimensional (2D) material-based heterostructures have shown advantages as alternative anodes due to their enhanced adsorption capacity. The lightweight nature of honeycomb borophene (HB) is beneficial for serving as a high-capacity anode but is constrained by structural instability arising from electron deficiency. In this study, using first-principles calculations, we propose a HB/boron phosphide (BP) heterostructure as an anode for both lithium-ion batteries and sodium-ion batteries (SIBs). The heterostructure engineering not only stabilizes the HB structure but also leads to a bonding heterostructure instead of common van der Walls type. The HB/BP demonstrates robust structural stability and reversibility when multiple ions are stored. In addition, the HB/BP offers stable storage sites and low diffusion barriers for lithium (0.31 eV) and sodium (0.28 eV), indicating rapid charging–discharging performance. Notably, the predicted maximum sodium storage capacity reaches 2402 mAh/g, surpassing that of the constituent monolayers and most 2D heterostructures. The underlying mechanism for high storage capacity is elucidated through detailed charge image model analysis, offering atomistic-scale insights for constructing high-capacity anodes. All results suggest that the presented HB/BP is a promising anode candidate for SIBs and opens an avenue for stabilizing HB in energy storage. |
doi_str_mv | 10.1063/5.0224095 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0224095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112201464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-9d887debc8e45e1566ddfa349684190af8de026450f6caad393ab158417187bc3</originalsourceid><addsrcrecordid>eNp9kE1LwzAYx4MoOKcHv0HAk0Jd0jRpepT5CgMv7lzS5OnasSY1SYWBH96M7ezpefn_nhf-CN1S8kiJYAv-SPK8IBU_QzNKyjJjlMpzNCOEsExUnF6iqxC2qeQ5YzP0u7Ze_cCutxscO8BgO2U1GByc6achC9F5tQE8gE5CHwbcW6xwiN7ZzW6PG2dNovNn3DkLe-2GJvW8GzuwsDhkFo-dC2PXG8AdRPAuDU86Th6u0UWrdgFuTnGO1q8vX8v3bPX59rF8WmWayjxmlZGyNNBoCQUHyoUwplWsqIQsaEVUKw2QXBSctEIrZVjFVEN5Eksqy0azObo77h29-54gxHrrJm_TyTrZk-eEFqJI1P2R0unF4KGtR98Pyu9rSuqDuTWvT-Ym9uHIBt1HFXtn_4H_AJFce3I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112201464</pqid></control><display><type>article</type><title>Unraveling the enhanced sodium-storage mechanism in a strongly bonded 2D honeycomb borophene/boron phosphide heterostructure</title><source>AIP Journals Complete</source><creator>Fan, Junming ; Chen, Haiyuan ; Niu, Xiaobin</creator><creatorcontrib>Fan, Junming ; Chen, Haiyuan ; Niu, Xiaobin</creatorcontrib><description>The growing modern demand for battery capacity is driving the development of high-capacity metal-ion battery anodes for future energy storage. Two-dimensional (2D) material-based heterostructures have shown advantages as alternative anodes due to their enhanced adsorption capacity. The lightweight nature of honeycomb borophene (HB) is beneficial for serving as a high-capacity anode but is constrained by structural instability arising from electron deficiency. In this study, using first-principles calculations, we propose a HB/boron phosphide (BP) heterostructure as an anode for both lithium-ion batteries and sodium-ion batteries (SIBs). The heterostructure engineering not only stabilizes the HB structure but also leads to a bonding heterostructure instead of common van der Walls type. The HB/BP demonstrates robust structural stability and reversibility when multiple ions are stored. In addition, the HB/BP offers stable storage sites and low diffusion barriers for lithium (0.31 eV) and sodium (0.28 eV), indicating rapid charging–discharging performance. Notably, the predicted maximum sodium storage capacity reaches 2402 mAh/g, surpassing that of the constituent monolayers and most 2D heterostructures. The underlying mechanism for high storage capacity is elucidated through detailed charge image model analysis, offering atomistic-scale insights for constructing high-capacity anodes. All results suggest that the presented HB/BP is a promising anode candidate for SIBs and opens an avenue for stabilizing HB in energy storage.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0224095</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Anodes ; Bonding strength ; Boron phosphides ; Borophene ; Chemical bonds ; Diffusion barriers ; Energy storage ; First principles ; Heterostructures ; Lithium-ion batteries ; Sodium ; Sodium-ion batteries ; Storage capacity ; Structural stability ; Two dimensional analysis ; Two dimensional materials</subject><ispartof>Applied physics letters, 2024-09, Vol.125 (14)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-9d887debc8e45e1566ddfa349684190af8de026450f6caad393ab158417187bc3</cites><orcidid>0000-0002-5348-3013 ; 0000-0002-0491-0592</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0224095$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Fan, Junming</creatorcontrib><creatorcontrib>Chen, Haiyuan</creatorcontrib><creatorcontrib>Niu, Xiaobin</creatorcontrib><title>Unraveling the enhanced sodium-storage mechanism in a strongly bonded 2D honeycomb borophene/boron phosphide heterostructure</title><title>Applied physics letters</title><description>The growing modern demand for battery capacity is driving the development of high-capacity metal-ion battery anodes for future energy storage. Two-dimensional (2D) material-based heterostructures have shown advantages as alternative anodes due to their enhanced adsorption capacity. The lightweight nature of honeycomb borophene (HB) is beneficial for serving as a high-capacity anode but is constrained by structural instability arising from electron deficiency. In this study, using first-principles calculations, we propose a HB/boron phosphide (BP) heterostructure as an anode for both lithium-ion batteries and sodium-ion batteries (SIBs). The heterostructure engineering not only stabilizes the HB structure but also leads to a bonding heterostructure instead of common van der Walls type. The HB/BP demonstrates robust structural stability and reversibility when multiple ions are stored. In addition, the HB/BP offers stable storage sites and low diffusion barriers for lithium (0.31 eV) and sodium (0.28 eV), indicating rapid charging–discharging performance. Notably, the predicted maximum sodium storage capacity reaches 2402 mAh/g, surpassing that of the constituent monolayers and most 2D heterostructures. The underlying mechanism for high storage capacity is elucidated through detailed charge image model analysis, offering atomistic-scale insights for constructing high-capacity anodes. All results suggest that the presented HB/BP is a promising anode candidate for SIBs and opens an avenue for stabilizing HB in energy storage.</description><subject>Anodes</subject><subject>Bonding strength</subject><subject>Boron phosphides</subject><subject>Borophene</subject><subject>Chemical bonds</subject><subject>Diffusion barriers</subject><subject>Energy storage</subject><subject>First principles</subject><subject>Heterostructures</subject><subject>Lithium-ion batteries</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Storage capacity</subject><subject>Structural stability</subject><subject>Two dimensional analysis</subject><subject>Two dimensional materials</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LwzAYx4MoOKcHv0HAk0Jd0jRpepT5CgMv7lzS5OnasSY1SYWBH96M7ezpefn_nhf-CN1S8kiJYAv-SPK8IBU_QzNKyjJjlMpzNCOEsExUnF6iqxC2qeQ5YzP0u7Ze_cCutxscO8BgO2U1GByc6achC9F5tQE8gE5CHwbcW6xwiN7ZzW6PG2dNovNn3DkLe-2GJvW8GzuwsDhkFo-dC2PXG8AdRPAuDU86Th6u0UWrdgFuTnGO1q8vX8v3bPX59rF8WmWayjxmlZGyNNBoCQUHyoUwplWsqIQsaEVUKw2QXBSctEIrZVjFVEN5Eksqy0azObo77h29-54gxHrrJm_TyTrZk-eEFqJI1P2R0unF4KGtR98Pyu9rSuqDuTWvT-Ym9uHIBt1HFXtn_4H_AJFce3I</recordid><startdate>20240930</startdate><enddate>20240930</enddate><creator>Fan, Junming</creator><creator>Chen, Haiyuan</creator><creator>Niu, Xiaobin</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5348-3013</orcidid><orcidid>https://orcid.org/0000-0002-0491-0592</orcidid></search><sort><creationdate>20240930</creationdate><title>Unraveling the enhanced sodium-storage mechanism in a strongly bonded 2D honeycomb borophene/boron phosphide heterostructure</title><author>Fan, Junming ; Chen, Haiyuan ; Niu, Xiaobin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-9d887debc8e45e1566ddfa349684190af8de026450f6caad393ab158417187bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anodes</topic><topic>Bonding strength</topic><topic>Boron phosphides</topic><topic>Borophene</topic><topic>Chemical bonds</topic><topic>Diffusion barriers</topic><topic>Energy storage</topic><topic>First principles</topic><topic>Heterostructures</topic><topic>Lithium-ion batteries</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Storage capacity</topic><topic>Structural stability</topic><topic>Two dimensional analysis</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Junming</creatorcontrib><creatorcontrib>Chen, Haiyuan</creatorcontrib><creatorcontrib>Niu, Xiaobin</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Junming</au><au>Chen, Haiyuan</au><au>Niu, Xiaobin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unraveling the enhanced sodium-storage mechanism in a strongly bonded 2D honeycomb borophene/boron phosphide heterostructure</atitle><jtitle>Applied physics letters</jtitle><date>2024-09-30</date><risdate>2024</risdate><volume>125</volume><issue>14</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>The growing modern demand for battery capacity is driving the development of high-capacity metal-ion battery anodes for future energy storage. Two-dimensional (2D) material-based heterostructures have shown advantages as alternative anodes due to their enhanced adsorption capacity. The lightweight nature of honeycomb borophene (HB) is beneficial for serving as a high-capacity anode but is constrained by structural instability arising from electron deficiency. In this study, using first-principles calculations, we propose a HB/boron phosphide (BP) heterostructure as an anode for both lithium-ion batteries and sodium-ion batteries (SIBs). The heterostructure engineering not only stabilizes the HB structure but also leads to a bonding heterostructure instead of common van der Walls type. The HB/BP demonstrates robust structural stability and reversibility when multiple ions are stored. In addition, the HB/BP offers stable storage sites and low diffusion barriers for lithium (0.31 eV) and sodium (0.28 eV), indicating rapid charging–discharging performance. Notably, the predicted maximum sodium storage capacity reaches 2402 mAh/g, surpassing that of the constituent monolayers and most 2D heterostructures. The underlying mechanism for high storage capacity is elucidated through detailed charge image model analysis, offering atomistic-scale insights for constructing high-capacity anodes. All results suggest that the presented HB/BP is a promising anode candidate for SIBs and opens an avenue for stabilizing HB in energy storage.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0224095</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5348-3013</orcidid><orcidid>https://orcid.org/0000-0002-0491-0592</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2024-09, Vol.125 (14) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0224095 |
source | AIP Journals Complete |
subjects | Anodes Bonding strength Boron phosphides Borophene Chemical bonds Diffusion barriers Energy storage First principles Heterostructures Lithium-ion batteries Sodium Sodium-ion batteries Storage capacity Structural stability Two dimensional analysis Two dimensional materials |
title | Unraveling the enhanced sodium-storage mechanism in a strongly bonded 2D honeycomb borophene/boron phosphide heterostructure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A59%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unraveling%20the%20enhanced%20sodium-storage%20mechanism%20in%20a%20strongly%20bonded%202D%20honeycomb%20borophene/boron%20phosphide%20heterostructure&rft.jtitle=Applied%20physics%20letters&rft.au=Fan,%20Junming&rft.date=2024-09-30&rft.volume=125&rft.issue=14&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0224095&rft_dat=%3Cproquest_scita%3E3112201464%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112201464&rft_id=info:pmid/&rfr_iscdi=true |