Bandgap opening of ferric chloride intercalated graphene by applying small electric field
Graphene has exceptional properties with great promise for various applications. However, pristine graphene cannot be used in nano-electronics because it lacks a gap in energy dispersion at the Dirac point. Therefore, researchers have been developing methods to open the gap, which would open the doo...
Gespeichert in:
Veröffentlicht in: | AIP advances 2024-12, Vol.14 (12) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | |
container_title | AIP advances |
container_volume | 14 |
creator | Indika Senevirathna, M. K. Samarakoon, Duminda K. Gunasinghe, Rosi Wang, Xiao-Qian Williams, Michael D. |
description | Graphene has exceptional properties with great promise for various applications. However, pristine graphene cannot be used in nano-electronics because it lacks a gap in energy dispersion at the Dirac point. Therefore, researchers have been developing methods to open the gap, which would open the door for the use of graphene in a wide range of electronic and photovoltaic devices. Through density functional theory calculations, we identified a specific range of electric field values that could potentially open the Dirac cones and separate the two π (VB) and two π* (CB) bands belonging to each graphene layer in FeCl3 intercalated bilayer graphene. To our knowledge, no such findings have been reported in the literature. These findings could aid in developing a better understanding of the electronic structure of materials and enable the design of more efficient electronic devices. |
doi_str_mv | 10.1063/5.0221841 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0221841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3140640998</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1348-9b7d711b09baaa5b53b1fedbd62dfb54dd828588b083d9d55d674785b6c035b53</originalsourceid><addsrcrecordid>eNotkD1rwzAYhEWh0JBm6D8QdCs41actj21om0KgSzt0EpJf2VFQZFV2Bv_7xiS33PLcHRxCD5SsKSn5s1wTxqgS9AYtGJWq4IyVd2g1DAdylqgpUWKBfl9NhM4k3CcXfexw3-LW5ewb3OxDnz047OPocmOCGR3gLpu0d9FhO2GTUpjm0HA0IWAXXDPOyda7APfotjVhcKurL9HP-9v3Zlvsvj4-Ny-7IlEuVFHbCipKLamtMUZayS1tHVgoGbRWCgDFlFTKEsWhBimhrESlpC0bwmd8iR4vvSn3fyc3jPrQn3I8T2pOBSkFqWt1pp4u1ND40Yy-jzplfzR50pTo-TEt9fUx_g-51V9z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3140640998</pqid></control><display><type>article</type><title>Bandgap opening of ferric chloride intercalated graphene by applying small electric field</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Indika Senevirathna, M. K. ; Samarakoon, Duminda K. ; Gunasinghe, Rosi ; Wang, Xiao-Qian ; Williams, Michael D.</creator><creatorcontrib>Indika Senevirathna, M. K. ; Samarakoon, Duminda K. ; Gunasinghe, Rosi ; Wang, Xiao-Qian ; Williams, Michael D.</creatorcontrib><description>Graphene has exceptional properties with great promise for various applications. However, pristine graphene cannot be used in nano-electronics because it lacks a gap in energy dispersion at the Dirac point. Therefore, researchers have been developing methods to open the gap, which would open the door for the use of graphene in a wide range of electronic and photovoltaic devices. Through density functional theory calculations, we identified a specific range of electric field values that could potentially open the Dirac cones and separate the two π (VB) and two π* (CB) bands belonging to each graphene layer in FeCl3 intercalated bilayer graphene. To our knowledge, no such findings have been reported in the literature. These findings could aid in developing a better understanding of the electronic structure of materials and enable the design of more efficient electronic devices.</description><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0221841</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Band theory ; Banded structure ; Bilayers ; Density functional theory ; Electric fields ; Electronic devices ; Electronic structure ; Energy gap ; Ferric chloride ; Graphene ; Photovoltaic cells</subject><ispartof>AIP advances, 2024-12, Vol.14 (12)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0004-6354-0941 ; 0000-0002-3688-6144 ; 0000-0002-4357-5029 ; 0009-0000-6083-0135</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Indika Senevirathna, M. K.</creatorcontrib><creatorcontrib>Samarakoon, Duminda K.</creatorcontrib><creatorcontrib>Gunasinghe, Rosi</creatorcontrib><creatorcontrib>Wang, Xiao-Qian</creatorcontrib><creatorcontrib>Williams, Michael D.</creatorcontrib><title>Bandgap opening of ferric chloride intercalated graphene by applying small electric field</title><title>AIP advances</title><description>Graphene has exceptional properties with great promise for various applications. However, pristine graphene cannot be used in nano-electronics because it lacks a gap in energy dispersion at the Dirac point. Therefore, researchers have been developing methods to open the gap, which would open the door for the use of graphene in a wide range of electronic and photovoltaic devices. Through density functional theory calculations, we identified a specific range of electric field values that could potentially open the Dirac cones and separate the two π (VB) and two π* (CB) bands belonging to each graphene layer in FeCl3 intercalated bilayer graphene. To our knowledge, no such findings have been reported in the literature. These findings could aid in developing a better understanding of the electronic structure of materials and enable the design of more efficient electronic devices.</description><subject>Band theory</subject><subject>Banded structure</subject><subject>Bilayers</subject><subject>Density functional theory</subject><subject>Electric fields</subject><subject>Electronic devices</subject><subject>Electronic structure</subject><subject>Energy gap</subject><subject>Ferric chloride</subject><subject>Graphene</subject><subject>Photovoltaic cells</subject><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkD1rwzAYhEWh0JBm6D8QdCs41actj21om0KgSzt0EpJf2VFQZFV2Bv_7xiS33PLcHRxCD5SsKSn5s1wTxqgS9AYtGJWq4IyVd2g1DAdylqgpUWKBfl9NhM4k3CcXfexw3-LW5ewb3OxDnz047OPocmOCGR3gLpu0d9FhO2GTUpjm0HA0IWAXXDPOyda7APfotjVhcKurL9HP-9v3Zlvsvj4-Ny-7IlEuVFHbCipKLamtMUZayS1tHVgoGbRWCgDFlFTKEsWhBimhrESlpC0bwmd8iR4vvSn3fyc3jPrQn3I8T2pOBSkFqWt1pp4u1ND40Yy-jzplfzR50pTo-TEt9fUx_g-51V9z</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Indika Senevirathna, M. K.</creator><creator>Samarakoon, Duminda K.</creator><creator>Gunasinghe, Rosi</creator><creator>Wang, Xiao-Qian</creator><creator>Williams, Michael D.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0004-6354-0941</orcidid><orcidid>https://orcid.org/0000-0002-3688-6144</orcidid><orcidid>https://orcid.org/0000-0002-4357-5029</orcidid><orcidid>https://orcid.org/0009-0000-6083-0135</orcidid></search><sort><creationdate>20241201</creationdate><title>Bandgap opening of ferric chloride intercalated graphene by applying small electric field</title><author>Indika Senevirathna, M. K. ; Samarakoon, Duminda K. ; Gunasinghe, Rosi ; Wang, Xiao-Qian ; Williams, Michael D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1348-9b7d711b09baaa5b53b1fedbd62dfb54dd828588b083d9d55d674785b6c035b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Band theory</topic><topic>Banded structure</topic><topic>Bilayers</topic><topic>Density functional theory</topic><topic>Electric fields</topic><topic>Electronic devices</topic><topic>Electronic structure</topic><topic>Energy gap</topic><topic>Ferric chloride</topic><topic>Graphene</topic><topic>Photovoltaic cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Indika Senevirathna, M. K.</creatorcontrib><creatorcontrib>Samarakoon, Duminda K.</creatorcontrib><creatorcontrib>Gunasinghe, Rosi</creatorcontrib><creatorcontrib>Wang, Xiao-Qian</creatorcontrib><creatorcontrib>Williams, Michael D.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Indika Senevirathna, M. K.</au><au>Samarakoon, Duminda K.</au><au>Gunasinghe, Rosi</au><au>Wang, Xiao-Qian</au><au>Williams, Michael D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bandgap opening of ferric chloride intercalated graphene by applying small electric field</atitle><jtitle>AIP advances</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>14</volume><issue>12</issue><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Graphene has exceptional properties with great promise for various applications. However, pristine graphene cannot be used in nano-electronics because it lacks a gap in energy dispersion at the Dirac point. Therefore, researchers have been developing methods to open the gap, which would open the door for the use of graphene in a wide range of electronic and photovoltaic devices. Through density functional theory calculations, we identified a specific range of electric field values that could potentially open the Dirac cones and separate the two π (VB) and two π* (CB) bands belonging to each graphene layer in FeCl3 intercalated bilayer graphene. To our knowledge, no such findings have been reported in the literature. These findings could aid in developing a better understanding of the electronic structure of materials and enable the design of more efficient electronic devices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0221841</doi><tpages>6</tpages><orcidid>https://orcid.org/0009-0004-6354-0941</orcidid><orcidid>https://orcid.org/0000-0002-3688-6144</orcidid><orcidid>https://orcid.org/0000-0002-4357-5029</orcidid><orcidid>https://orcid.org/0009-0000-6083-0135</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2158-3226 |
ispartof | AIP advances, 2024-12, Vol.14 (12) |
issn | 2158-3226 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0221841 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | Band theory Banded structure Bilayers Density functional theory Electric fields Electronic devices Electronic structure Energy gap Ferric chloride Graphene Photovoltaic cells |
title | Bandgap opening of ferric chloride intercalated graphene by applying small electric field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A43%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bandgap%20opening%20of%20ferric%20chloride%20intercalated%20graphene%20by%20applying%20small%20electric%20field&rft.jtitle=AIP%20advances&rft.au=Indika%20Senevirathna,%20M.%20K.&rft.date=2024-12-01&rft.volume=14&rft.issue=12&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0221841&rft_dat=%3Cproquest_scita%3E3140640998%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3140640998&rft_id=info:pmid/&rfr_iscdi=true |