Bandgap opening of ferric chloride intercalated graphene by applying small electric field

Graphene has exceptional properties with great promise for various applications. However, pristine graphene cannot be used in nano-electronics because it lacks a gap in energy dispersion at the Dirac point. Therefore, researchers have been developing methods to open the gap, which would open the doo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2024-12, Vol.14 (12)
Hauptverfasser: Indika Senevirathna, M. K., Samarakoon, Duminda K., Gunasinghe, Rosi, Wang, Xiao-Qian, Williams, Michael D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title AIP advances
container_volume 14
creator Indika Senevirathna, M. K.
Samarakoon, Duminda K.
Gunasinghe, Rosi
Wang, Xiao-Qian
Williams, Michael D.
description Graphene has exceptional properties with great promise for various applications. However, pristine graphene cannot be used in nano-electronics because it lacks a gap in energy dispersion at the Dirac point. Therefore, researchers have been developing methods to open the gap, which would open the door for the use of graphene in a wide range of electronic and photovoltaic devices. Through density functional theory calculations, we identified a specific range of electric field values that could potentially open the Dirac cones and separate the two π (VB) and two π* (CB) bands belonging to each graphene layer in FeCl3 intercalated bilayer graphene. To our knowledge, no such findings have been reported in the literature. These findings could aid in developing a better understanding of the electronic structure of materials and enable the design of more efficient electronic devices.
doi_str_mv 10.1063/5.0221841
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0221841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3140640998</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1348-9b7d711b09baaa5b53b1fedbd62dfb54dd828588b083d9d55d674785b6c035b53</originalsourceid><addsrcrecordid>eNotkD1rwzAYhEWh0JBm6D8QdCs41actj21om0KgSzt0EpJf2VFQZFV2Bv_7xiS33PLcHRxCD5SsKSn5s1wTxqgS9AYtGJWq4IyVd2g1DAdylqgpUWKBfl9NhM4k3CcXfexw3-LW5ewb3OxDnz047OPocmOCGR3gLpu0d9FhO2GTUpjm0HA0IWAXXDPOyda7APfotjVhcKurL9HP-9v3Zlvsvj4-Ny-7IlEuVFHbCipKLamtMUZayS1tHVgoGbRWCgDFlFTKEsWhBimhrESlpC0bwmd8iR4vvSn3fyc3jPrQn3I8T2pOBSkFqWt1pp4u1ND40Yy-jzplfzR50pTo-TEt9fUx_g-51V9z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3140640998</pqid></control><display><type>article</type><title>Bandgap opening of ferric chloride intercalated graphene by applying small electric field</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Indika Senevirathna, M. K. ; Samarakoon, Duminda K. ; Gunasinghe, Rosi ; Wang, Xiao-Qian ; Williams, Michael D.</creator><creatorcontrib>Indika Senevirathna, M. K. ; Samarakoon, Duminda K. ; Gunasinghe, Rosi ; Wang, Xiao-Qian ; Williams, Michael D.</creatorcontrib><description>Graphene has exceptional properties with great promise for various applications. However, pristine graphene cannot be used in nano-electronics because it lacks a gap in energy dispersion at the Dirac point. Therefore, researchers have been developing methods to open the gap, which would open the door for the use of graphene in a wide range of electronic and photovoltaic devices. Through density functional theory calculations, we identified a specific range of electric field values that could potentially open the Dirac cones and separate the two π (VB) and two π* (CB) bands belonging to each graphene layer in FeCl3 intercalated bilayer graphene. To our knowledge, no such findings have been reported in the literature. These findings could aid in developing a better understanding of the electronic structure of materials and enable the design of more efficient electronic devices.</description><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0221841</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Band theory ; Banded structure ; Bilayers ; Density functional theory ; Electric fields ; Electronic devices ; Electronic structure ; Energy gap ; Ferric chloride ; Graphene ; Photovoltaic cells</subject><ispartof>AIP advances, 2024-12, Vol.14 (12)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0004-6354-0941 ; 0000-0002-3688-6144 ; 0000-0002-4357-5029 ; 0009-0000-6083-0135</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Indika Senevirathna, M. K.</creatorcontrib><creatorcontrib>Samarakoon, Duminda K.</creatorcontrib><creatorcontrib>Gunasinghe, Rosi</creatorcontrib><creatorcontrib>Wang, Xiao-Qian</creatorcontrib><creatorcontrib>Williams, Michael D.</creatorcontrib><title>Bandgap opening of ferric chloride intercalated graphene by applying small electric field</title><title>AIP advances</title><description>Graphene has exceptional properties with great promise for various applications. However, pristine graphene cannot be used in nano-electronics because it lacks a gap in energy dispersion at the Dirac point. Therefore, researchers have been developing methods to open the gap, which would open the door for the use of graphene in a wide range of electronic and photovoltaic devices. Through density functional theory calculations, we identified a specific range of electric field values that could potentially open the Dirac cones and separate the two π (VB) and two π* (CB) bands belonging to each graphene layer in FeCl3 intercalated bilayer graphene. To our knowledge, no such findings have been reported in the literature. These findings could aid in developing a better understanding of the electronic structure of materials and enable the design of more efficient electronic devices.</description><subject>Band theory</subject><subject>Banded structure</subject><subject>Bilayers</subject><subject>Density functional theory</subject><subject>Electric fields</subject><subject>Electronic devices</subject><subject>Electronic structure</subject><subject>Energy gap</subject><subject>Ferric chloride</subject><subject>Graphene</subject><subject>Photovoltaic cells</subject><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkD1rwzAYhEWh0JBm6D8QdCs41actj21om0KgSzt0EpJf2VFQZFV2Bv_7xiS33PLcHRxCD5SsKSn5s1wTxqgS9AYtGJWq4IyVd2g1DAdylqgpUWKBfl9NhM4k3CcXfexw3-LW5ewb3OxDnz047OPocmOCGR3gLpu0d9FhO2GTUpjm0HA0IWAXXDPOyda7APfotjVhcKurL9HP-9v3Zlvsvj4-Ny-7IlEuVFHbCipKLamtMUZayS1tHVgoGbRWCgDFlFTKEsWhBimhrESlpC0bwmd8iR4vvSn3fyc3jPrQn3I8T2pOBSkFqWt1pp4u1ND40Yy-jzplfzR50pTo-TEt9fUx_g-51V9z</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Indika Senevirathna, M. K.</creator><creator>Samarakoon, Duminda K.</creator><creator>Gunasinghe, Rosi</creator><creator>Wang, Xiao-Qian</creator><creator>Williams, Michael D.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0004-6354-0941</orcidid><orcidid>https://orcid.org/0000-0002-3688-6144</orcidid><orcidid>https://orcid.org/0000-0002-4357-5029</orcidid><orcidid>https://orcid.org/0009-0000-6083-0135</orcidid></search><sort><creationdate>20241201</creationdate><title>Bandgap opening of ferric chloride intercalated graphene by applying small electric field</title><author>Indika Senevirathna, M. K. ; Samarakoon, Duminda K. ; Gunasinghe, Rosi ; Wang, Xiao-Qian ; Williams, Michael D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1348-9b7d711b09baaa5b53b1fedbd62dfb54dd828588b083d9d55d674785b6c035b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Band theory</topic><topic>Banded structure</topic><topic>Bilayers</topic><topic>Density functional theory</topic><topic>Electric fields</topic><topic>Electronic devices</topic><topic>Electronic structure</topic><topic>Energy gap</topic><topic>Ferric chloride</topic><topic>Graphene</topic><topic>Photovoltaic cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Indika Senevirathna, M. K.</creatorcontrib><creatorcontrib>Samarakoon, Duminda K.</creatorcontrib><creatorcontrib>Gunasinghe, Rosi</creatorcontrib><creatorcontrib>Wang, Xiao-Qian</creatorcontrib><creatorcontrib>Williams, Michael D.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Indika Senevirathna, M. K.</au><au>Samarakoon, Duminda K.</au><au>Gunasinghe, Rosi</au><au>Wang, Xiao-Qian</au><au>Williams, Michael D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bandgap opening of ferric chloride intercalated graphene by applying small electric field</atitle><jtitle>AIP advances</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>14</volume><issue>12</issue><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Graphene has exceptional properties with great promise for various applications. However, pristine graphene cannot be used in nano-electronics because it lacks a gap in energy dispersion at the Dirac point. Therefore, researchers have been developing methods to open the gap, which would open the door for the use of graphene in a wide range of electronic and photovoltaic devices. Through density functional theory calculations, we identified a specific range of electric field values that could potentially open the Dirac cones and separate the two π (VB) and two π* (CB) bands belonging to each graphene layer in FeCl3 intercalated bilayer graphene. To our knowledge, no such findings have been reported in the literature. These findings could aid in developing a better understanding of the electronic structure of materials and enable the design of more efficient electronic devices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0221841</doi><tpages>6</tpages><orcidid>https://orcid.org/0009-0004-6354-0941</orcidid><orcidid>https://orcid.org/0000-0002-3688-6144</orcidid><orcidid>https://orcid.org/0000-0002-4357-5029</orcidid><orcidid>https://orcid.org/0009-0000-6083-0135</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2158-3226
ispartof AIP advances, 2024-12, Vol.14 (12)
issn 2158-3226
language eng
recordid cdi_scitation_primary_10_1063_5_0221841
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Band theory
Banded structure
Bilayers
Density functional theory
Electric fields
Electronic devices
Electronic structure
Energy gap
Ferric chloride
Graphene
Photovoltaic cells
title Bandgap opening of ferric chloride intercalated graphene by applying small electric field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A43%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bandgap%20opening%20of%20ferric%20chloride%20intercalated%20graphene%20by%20applying%20small%20electric%20field&rft.jtitle=AIP%20advances&rft.au=Indika%20Senevirathna,%20M.%20K.&rft.date=2024-12-01&rft.volume=14&rft.issue=12&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0221841&rft_dat=%3Cproquest_scita%3E3140640998%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3140640998&rft_id=info:pmid/&rfr_iscdi=true