Flow-induced vibrations of a circular cylinder positioned upstream of a fixed cylinder

The present work employs the immersed boundary method to perform direct simulations of flow-induced vibrations in a tandem cylinder at laminar flows, where only the upstream cylinder (UC) is allowed to vibrate. The primary focus is to elucidate the vibration response of the UC and the underlying hyd...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2024-08, Vol.36 (8)
Hauptverfasser: Li, Shenfang, Wang, Junlei, Zhang, Baoshou, Han, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Physics of fluids (1994)
container_volume 36
creator Li, Shenfang
Wang, Junlei
Zhang, Baoshou
Han, Peng
description The present work employs the immersed boundary method to perform direct simulations of flow-induced vibrations in a tandem cylinder at laminar flows, where only the upstream cylinder (UC) is allowed to vibrate. The primary focus is to elucidate the vibration response of the UC and the underlying hydrodynamic mechanisms when a fixed downstream cylinder (DC) is introduced. The results indicate that varying spacing ratios ( L/D) and reduced velocities ( U*) leads to both self-limiting galloping and lock-in instabilities in the UC. The resonance regions for the UC can be categorized into different regimes, such as lock-in, harmonic lock-in (HLN), upper branch, and lower branch regimes, based on various mechanisms. Notably, the vibrations in the HLN regime are distinct from the traditional lock-in observed in a bare cylinder, with the oscillation frequency locking onto the higher-order fluid force frequency and the occurrence of larger amplitudes. Regarding the interference galloping instability, we show that the self-limiting amplitude is related to the vortex shedding points on either side of the DC. The introduction of a fixed DC results in the observation of six vortex shedding modes: C(2S), 2S, P+T, 2T, 2P, and Aperiodic. Among these, weak vortices in the 2P mode are found to suppress the vibration amplitude. The asymmetrical and aperiodic evolution of the wake flow generates even-order fluid forces. Furthermore, an analysis of the energy transfer indicates that the tandem cylinders exhibit high fluid kinetic energy conversion ability over a wide range of U*−L/D.
doi_str_mv 10.1063/5.0221505
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0221505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3090992410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-26a9ef977442811ef7248897d50197acda6b075fd7c6c918eba5097936e121203</originalsourceid><addsrcrecordid>eNp90MFKxDAQBuAgCq6rB9-g4EmhOpM2SXOUxVVhwYt6Ddk0gSzdTU1add_e1q5XTzMMH__AT8glwi0CL-7YLVCKDNgRmSFUMhec8-NxF5BzXuApOUtpAwCFpHxG3pdN-Mr9ru6NrbNPv46682GXsuAynRkfTd_omJl9MxgbszYkP4IB923qotXbiTr_Pdz-3Dk5cbpJ9uIw5-Rt-fC6eMpXL4_Pi_tVbrCiXU65ltZJIcqSVojWCVpWlRQ1A5RCm1rzNQjmamG4kVjZtWYghSy4RYoUijm5mnLbGD56mzq1CX3cDS9VARKkpCWO6npSJoaUonWqjX6r414hqLE2xdShtsHeTDYZ3_128Q_-ARVma6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090992410</pqid></control><display><type>article</type><title>Flow-induced vibrations of a circular cylinder positioned upstream of a fixed cylinder</title><source>AIP Journals Complete</source><creator>Li, Shenfang ; Wang, Junlei ; Zhang, Baoshou ; Han, Peng</creator><creatorcontrib>Li, Shenfang ; Wang, Junlei ; Zhang, Baoshou ; Han, Peng</creatorcontrib><description>The present work employs the immersed boundary method to perform direct simulations of flow-induced vibrations in a tandem cylinder at laminar flows, where only the upstream cylinder (UC) is allowed to vibrate. The primary focus is to elucidate the vibration response of the UC and the underlying hydrodynamic mechanisms when a fixed downstream cylinder (DC) is introduced. The results indicate that varying spacing ratios ( L/D) and reduced velocities ( U*) leads to both self-limiting galloping and lock-in instabilities in the UC. The resonance regions for the UC can be categorized into different regimes, such as lock-in, harmonic lock-in (HLN), upper branch, and lower branch regimes, based on various mechanisms. Notably, the vibrations in the HLN regime are distinct from the traditional lock-in observed in a bare cylinder, with the oscillation frequency locking onto the higher-order fluid force frequency and the occurrence of larger amplitudes. Regarding the interference galloping instability, we show that the self-limiting amplitude is related to the vortex shedding points on either side of the DC. The introduction of a fixed DC results in the observation of six vortex shedding modes: C(2S), 2S, P+T, 2T, 2P, and Aperiodic. Among these, weak vortices in the 2P mode are found to suppress the vibration amplitude. The asymmetrical and aperiodic evolution of the wake flow generates even-order fluid forces. Furthermore, an analysis of the energy transfer indicates that the tandem cylinders exhibit high fluid kinetic energy conversion ability over a wide range of U*−L/D.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0221505</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Amplitudes ; Circular cylinders ; Constraining ; Energy conversion ; Energy transfer ; Flow generated vibrations ; Fluid flow ; Frequency locking ; Frequency stability ; Kinetic energy ; Laminar flow ; Upstream ; Vibration analysis ; Vibration response ; Vortex shedding</subject><ispartof>Physics of fluids (1994), 2024-08, Vol.36 (8)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-26a9ef977442811ef7248897d50197acda6b075fd7c6c918eba5097936e121203</cites><orcidid>0000-0001-6225-969X ; 0000-0002-8368-9549 ; 0000-0003-4453-0946</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Shenfang</creatorcontrib><creatorcontrib>Wang, Junlei</creatorcontrib><creatorcontrib>Zhang, Baoshou</creatorcontrib><creatorcontrib>Han, Peng</creatorcontrib><title>Flow-induced vibrations of a circular cylinder positioned upstream of a fixed cylinder</title><title>Physics of fluids (1994)</title><description>The present work employs the immersed boundary method to perform direct simulations of flow-induced vibrations in a tandem cylinder at laminar flows, where only the upstream cylinder (UC) is allowed to vibrate. The primary focus is to elucidate the vibration response of the UC and the underlying hydrodynamic mechanisms when a fixed downstream cylinder (DC) is introduced. The results indicate that varying spacing ratios ( L/D) and reduced velocities ( U*) leads to both self-limiting galloping and lock-in instabilities in the UC. The resonance regions for the UC can be categorized into different regimes, such as lock-in, harmonic lock-in (HLN), upper branch, and lower branch regimes, based on various mechanisms. Notably, the vibrations in the HLN regime are distinct from the traditional lock-in observed in a bare cylinder, with the oscillation frequency locking onto the higher-order fluid force frequency and the occurrence of larger amplitudes. Regarding the interference galloping instability, we show that the self-limiting amplitude is related to the vortex shedding points on either side of the DC. The introduction of a fixed DC results in the observation of six vortex shedding modes: C(2S), 2S, P+T, 2T, 2P, and Aperiodic. Among these, weak vortices in the 2P mode are found to suppress the vibration amplitude. The asymmetrical and aperiodic evolution of the wake flow generates even-order fluid forces. Furthermore, an analysis of the energy transfer indicates that the tandem cylinders exhibit high fluid kinetic energy conversion ability over a wide range of U*−L/D.</description><subject>Amplitudes</subject><subject>Circular cylinders</subject><subject>Constraining</subject><subject>Energy conversion</subject><subject>Energy transfer</subject><subject>Flow generated vibrations</subject><subject>Fluid flow</subject><subject>Frequency locking</subject><subject>Frequency stability</subject><subject>Kinetic energy</subject><subject>Laminar flow</subject><subject>Upstream</subject><subject>Vibration analysis</subject><subject>Vibration response</subject><subject>Vortex shedding</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90MFKxDAQBuAgCq6rB9-g4EmhOpM2SXOUxVVhwYt6Ddk0gSzdTU1add_e1q5XTzMMH__AT8glwi0CL-7YLVCKDNgRmSFUMhec8-NxF5BzXuApOUtpAwCFpHxG3pdN-Mr9ru6NrbNPv46682GXsuAynRkfTd_omJl9MxgbszYkP4IB923qotXbiTr_Pdz-3Dk5cbpJ9uIw5-Rt-fC6eMpXL4_Pi_tVbrCiXU65ltZJIcqSVojWCVpWlRQ1A5RCm1rzNQjmamG4kVjZtWYghSy4RYoUijm5mnLbGD56mzq1CX3cDS9VARKkpCWO6npSJoaUonWqjX6r414hqLE2xdShtsHeTDYZ3_128Q_-ARVma6A</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Li, Shenfang</creator><creator>Wang, Junlei</creator><creator>Zhang, Baoshou</creator><creator>Han, Peng</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6225-969X</orcidid><orcidid>https://orcid.org/0000-0002-8368-9549</orcidid><orcidid>https://orcid.org/0000-0003-4453-0946</orcidid></search><sort><creationdate>202408</creationdate><title>Flow-induced vibrations of a circular cylinder positioned upstream of a fixed cylinder</title><author>Li, Shenfang ; Wang, Junlei ; Zhang, Baoshou ; Han, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-26a9ef977442811ef7248897d50197acda6b075fd7c6c918eba5097936e121203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amplitudes</topic><topic>Circular cylinders</topic><topic>Constraining</topic><topic>Energy conversion</topic><topic>Energy transfer</topic><topic>Flow generated vibrations</topic><topic>Fluid flow</topic><topic>Frequency locking</topic><topic>Frequency stability</topic><topic>Kinetic energy</topic><topic>Laminar flow</topic><topic>Upstream</topic><topic>Vibration analysis</topic><topic>Vibration response</topic><topic>Vortex shedding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shenfang</creatorcontrib><creatorcontrib>Wang, Junlei</creatorcontrib><creatorcontrib>Zhang, Baoshou</creatorcontrib><creatorcontrib>Han, Peng</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shenfang</au><au>Wang, Junlei</au><au>Zhang, Baoshou</au><au>Han, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow-induced vibrations of a circular cylinder positioned upstream of a fixed cylinder</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-08</date><risdate>2024</risdate><volume>36</volume><issue>8</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The present work employs the immersed boundary method to perform direct simulations of flow-induced vibrations in a tandem cylinder at laminar flows, where only the upstream cylinder (UC) is allowed to vibrate. The primary focus is to elucidate the vibration response of the UC and the underlying hydrodynamic mechanisms when a fixed downstream cylinder (DC) is introduced. The results indicate that varying spacing ratios ( L/D) and reduced velocities ( U*) leads to both self-limiting galloping and lock-in instabilities in the UC. The resonance regions for the UC can be categorized into different regimes, such as lock-in, harmonic lock-in (HLN), upper branch, and lower branch regimes, based on various mechanisms. Notably, the vibrations in the HLN regime are distinct from the traditional lock-in observed in a bare cylinder, with the oscillation frequency locking onto the higher-order fluid force frequency and the occurrence of larger amplitudes. Regarding the interference galloping instability, we show that the self-limiting amplitude is related to the vortex shedding points on either side of the DC. The introduction of a fixed DC results in the observation of six vortex shedding modes: C(2S), 2S, P+T, 2T, 2P, and Aperiodic. Among these, weak vortices in the 2P mode are found to suppress the vibration amplitude. The asymmetrical and aperiodic evolution of the wake flow generates even-order fluid forces. Furthermore, an analysis of the energy transfer indicates that the tandem cylinders exhibit high fluid kinetic energy conversion ability over a wide range of U*−L/D.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0221505</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-6225-969X</orcidid><orcidid>https://orcid.org/0000-0002-8368-9549</orcidid><orcidid>https://orcid.org/0000-0003-4453-0946</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2024-08, Vol.36 (8)
issn 1070-6631
1089-7666
language eng
recordid cdi_scitation_primary_10_1063_5_0221505
source AIP Journals Complete
subjects Amplitudes
Circular cylinders
Constraining
Energy conversion
Energy transfer
Flow generated vibrations
Fluid flow
Frequency locking
Frequency stability
Kinetic energy
Laminar flow
Upstream
Vibration analysis
Vibration response
Vortex shedding
title Flow-induced vibrations of a circular cylinder positioned upstream of a fixed cylinder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A02%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow-induced%20vibrations%20of%20a%20circular%20cylinder%20positioned%20upstream%20of%20a%20fixed%20cylinder&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Li,%20Shenfang&rft.date=2024-08&rft.volume=36&rft.issue=8&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0221505&rft_dat=%3Cproquest_scita%3E3090992410%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090992410&rft_id=info:pmid/&rfr_iscdi=true