Au ion irradiation induces ultralow thermal conductivity in GaN
Gallium nitride (GaN) is widely considered as a crucial semiconductor for the nuclear industry and space explorations due to its superior radiation hardness. Despite extensive studies of the electronic and optical properties of irradiated GaN, the effects of particle irradiation on the thermal prope...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2024-07, Vol.125 (3) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 125 |
creator | Yan, Wujuan Xue, Yuanyuan Zhou, Wenjiang Wang, Yuxi Guo, Haichang Yang, Han Yang, Hongcai Jiang, Zhiyao Ding, Lili Chen, Wei Shen, Bo Yang, Xuelin Song, Bai |
description | Gallium nitride (GaN) is widely considered as a crucial semiconductor for the nuclear industry and space explorations due to its superior radiation hardness. Despite extensive studies of the electronic and optical properties of irradiated GaN, the effects of particle irradiation on the thermal properties remain largely unexplored. Here, we begin with single-crystalline GaN and employ an accelerator equipped with heavy gold ions (Au2+) as the radiation source in order to imitate extreme environments and maximize lattice damages. Eight different irradiated samples are prepared with the fluence of Au2+ spanning four orders of magnitude from 1011 to 1015 cm−2. The thermal conductivity (κ) of the ion-affected regions is measured using the laser pump–probe technique of frequency-domain thermoreflectance. We find that κ decreased consistently and notably with increasing irradiation fluence and observe a transition from crystal to glass-like thermal transport. Remarkably, the room-temperature κ of the GaN sample with the highest Au2+ fluence of 1 × 1015 cm−2 reaches about 1 Wm−1 K−1, which is two orders of magnitude lower than the κ of pristine GaN and approaches the theoretical minimum. A Callaway-type model captures the phonon–point defect scattering in samples with relatively low ion fluences. At higher fluences, the increased defect types and densities, together with the formation of nitrogen bubbles, further suppress phonon transport. Our findings are instrumental in fundamentally understanding the impact of heavy-ion irradiation on thermal transport and may prove useful for the application of GaN-based devices in radiation-intense environments. |
doi_str_mv | 10.1063/5.0220863 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0220863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081894368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-3b98d1c07f1172425d60d8b0d31efe031723bc137ea8aa63829688a5e2b741543</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmNw4BtU4gRShx03aXpC0zQG0gQXOEdpmopO3TqSFLRvT_fnzMnP9k9-8mPsFmGCIOlRTIBzUJLO2Aghz1NCVOdsBACUykLgJbsKYTW0ghON2NO0T5pukzTem6ox8aA3VW9dSPo2etN2v0n8cn5t2sR2-01sfpq4G6hkYd6u2UVt2uBuTnXMPp_nH7OXdPm-eJ1Nl6lFxWNKZaEqtJDXiDnPuKgkVKqEitDVDmgYUmmRcmeUMZIUL6RSRjhe5hmKjMbs7nh367vv3oWoV13vN4OlJlCoioykGqj7I2V9F4J3td76Zm38TiPofT5a6FM-A_twZINt4uHxf-A_uGdi-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081894368</pqid></control><display><type>article</type><title>Au ion irradiation induces ultralow thermal conductivity in GaN</title><source>AIP Journals Complete</source><creator>Yan, Wujuan ; Xue, Yuanyuan ; Zhou, Wenjiang ; Wang, Yuxi ; Guo, Haichang ; Yang, Han ; Yang, Hongcai ; Jiang, Zhiyao ; Ding, Lili ; Chen, Wei ; Shen, Bo ; Yang, Xuelin ; Song, Bai</creator><creatorcontrib>Yan, Wujuan ; Xue, Yuanyuan ; Zhou, Wenjiang ; Wang, Yuxi ; Guo, Haichang ; Yang, Han ; Yang, Hongcai ; Jiang, Zhiyao ; Ding, Lili ; Chen, Wei ; Shen, Bo ; Yang, Xuelin ; Song, Bai</creatorcontrib><description>Gallium nitride (GaN) is widely considered as a crucial semiconductor for the nuclear industry and space explorations due to its superior radiation hardness. Despite extensive studies of the electronic and optical properties of irradiated GaN, the effects of particle irradiation on the thermal properties remain largely unexplored. Here, we begin with single-crystalline GaN and employ an accelerator equipped with heavy gold ions (Au2+) as the radiation source in order to imitate extreme environments and maximize lattice damages. Eight different irradiated samples are prepared with the fluence of Au2+ spanning four orders of magnitude from 1011 to 1015 cm−2. The thermal conductivity (κ) of the ion-affected regions is measured using the laser pump–probe technique of frequency-domain thermoreflectance. We find that κ decreased consistently and notably with increasing irradiation fluence and observe a transition from crystal to glass-like thermal transport. Remarkably, the room-temperature κ of the GaN sample with the highest Au2+ fluence of 1 × 1015 cm−2 reaches about 1 Wm−1 K−1, which is two orders of magnitude lower than the κ of pristine GaN and approaches the theoretical minimum. A Callaway-type model captures the phonon–point defect scattering in samples with relatively low ion fluences. At higher fluences, the increased defect types and densities, together with the formation of nitrogen bubbles, further suppress phonon transport. Our findings are instrumental in fundamentally understanding the impact of heavy-ion irradiation on thermal transport and may prove useful for the application of GaN-based devices in radiation-intense environments.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0220863</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Crystal defects ; Extreme environments ; Fluence ; Gallium nitrides ; Heat conductivity ; Heat transfer ; Heavy ions ; Ion irradiation ; Optical properties ; Phonons ; Point defects ; Radiation ; Radiation damage ; Radiation sources ; Room temperature ; Single crystals ; Thermal conductivity ; Thermodynamic properties</subject><ispartof>Applied physics letters, 2024-07, Vol.125 (3)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-3b98d1c07f1172425d60d8b0d31efe031723bc137ea8aa63829688a5e2b741543</cites><orcidid>0009-0008-6138-1026 ; 0000-0001-5152-5075 ; 0009-0000-8900-0565 ; 0000-0003-3013-9831 ; 0000-0002-6303-1125 ; 0009-0008-8475-7049 ; 0000-0001-5555-0024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0220863$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4510,27923,27924,76155</link.rule.ids></links><search><creatorcontrib>Yan, Wujuan</creatorcontrib><creatorcontrib>Xue, Yuanyuan</creatorcontrib><creatorcontrib>Zhou, Wenjiang</creatorcontrib><creatorcontrib>Wang, Yuxi</creatorcontrib><creatorcontrib>Guo, Haichang</creatorcontrib><creatorcontrib>Yang, Han</creatorcontrib><creatorcontrib>Yang, Hongcai</creatorcontrib><creatorcontrib>Jiang, Zhiyao</creatorcontrib><creatorcontrib>Ding, Lili</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Shen, Bo</creatorcontrib><creatorcontrib>Yang, Xuelin</creatorcontrib><creatorcontrib>Song, Bai</creatorcontrib><title>Au ion irradiation induces ultralow thermal conductivity in GaN</title><title>Applied physics letters</title><description>Gallium nitride (GaN) is widely considered as a crucial semiconductor for the nuclear industry and space explorations due to its superior radiation hardness. Despite extensive studies of the electronic and optical properties of irradiated GaN, the effects of particle irradiation on the thermal properties remain largely unexplored. Here, we begin with single-crystalline GaN and employ an accelerator equipped with heavy gold ions (Au2+) as the radiation source in order to imitate extreme environments and maximize lattice damages. Eight different irradiated samples are prepared with the fluence of Au2+ spanning four orders of magnitude from 1011 to 1015 cm−2. The thermal conductivity (κ) of the ion-affected regions is measured using the laser pump–probe technique of frequency-domain thermoreflectance. We find that κ decreased consistently and notably with increasing irradiation fluence and observe a transition from crystal to glass-like thermal transport. Remarkably, the room-temperature κ of the GaN sample with the highest Au2+ fluence of 1 × 1015 cm−2 reaches about 1 Wm−1 K−1, which is two orders of magnitude lower than the κ of pristine GaN and approaches the theoretical minimum. A Callaway-type model captures the phonon–point defect scattering in samples with relatively low ion fluences. At higher fluences, the increased defect types and densities, together with the formation of nitrogen bubbles, further suppress phonon transport. Our findings are instrumental in fundamentally understanding the impact of heavy-ion irradiation on thermal transport and may prove useful for the application of GaN-based devices in radiation-intense environments.</description><subject>Crystal defects</subject><subject>Extreme environments</subject><subject>Fluence</subject><subject>Gallium nitrides</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Heavy ions</subject><subject>Ion irradiation</subject><subject>Optical properties</subject><subject>Phonons</subject><subject>Point defects</subject><subject>Radiation</subject><subject>Radiation damage</subject><subject>Radiation sources</subject><subject>Room temperature</subject><subject>Single crystals</subject><subject>Thermal conductivity</subject><subject>Thermodynamic properties</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSMEEmNw4BtU4gRShx03aXpC0zQG0gQXOEdpmopO3TqSFLRvT_fnzMnP9k9-8mPsFmGCIOlRTIBzUJLO2Aghz1NCVOdsBACUykLgJbsKYTW0ghON2NO0T5pukzTem6ox8aA3VW9dSPo2etN2v0n8cn5t2sR2-01sfpq4G6hkYd6u2UVt2uBuTnXMPp_nH7OXdPm-eJ1Nl6lFxWNKZaEqtJDXiDnPuKgkVKqEitDVDmgYUmmRcmeUMZIUL6RSRjhe5hmKjMbs7nh367vv3oWoV13vN4OlJlCoioykGqj7I2V9F4J3td76Zm38TiPofT5a6FM-A_twZINt4uHxf-A_uGdi-Q</recordid><startdate>20240715</startdate><enddate>20240715</enddate><creator>Yan, Wujuan</creator><creator>Xue, Yuanyuan</creator><creator>Zhou, Wenjiang</creator><creator>Wang, Yuxi</creator><creator>Guo, Haichang</creator><creator>Yang, Han</creator><creator>Yang, Hongcai</creator><creator>Jiang, Zhiyao</creator><creator>Ding, Lili</creator><creator>Chen, Wei</creator><creator>Shen, Bo</creator><creator>Yang, Xuelin</creator><creator>Song, Bai</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0008-6138-1026</orcidid><orcidid>https://orcid.org/0000-0001-5152-5075</orcidid><orcidid>https://orcid.org/0009-0000-8900-0565</orcidid><orcidid>https://orcid.org/0000-0003-3013-9831</orcidid><orcidid>https://orcid.org/0000-0002-6303-1125</orcidid><orcidid>https://orcid.org/0009-0008-8475-7049</orcidid><orcidid>https://orcid.org/0000-0001-5555-0024</orcidid></search><sort><creationdate>20240715</creationdate><title>Au ion irradiation induces ultralow thermal conductivity in GaN</title><author>Yan, Wujuan ; Xue, Yuanyuan ; Zhou, Wenjiang ; Wang, Yuxi ; Guo, Haichang ; Yang, Han ; Yang, Hongcai ; Jiang, Zhiyao ; Ding, Lili ; Chen, Wei ; Shen, Bo ; Yang, Xuelin ; Song, Bai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-3b98d1c07f1172425d60d8b0d31efe031723bc137ea8aa63829688a5e2b741543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Crystal defects</topic><topic>Extreme environments</topic><topic>Fluence</topic><topic>Gallium nitrides</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Heavy ions</topic><topic>Ion irradiation</topic><topic>Optical properties</topic><topic>Phonons</topic><topic>Point defects</topic><topic>Radiation</topic><topic>Radiation damage</topic><topic>Radiation sources</topic><topic>Room temperature</topic><topic>Single crystals</topic><topic>Thermal conductivity</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Wujuan</creatorcontrib><creatorcontrib>Xue, Yuanyuan</creatorcontrib><creatorcontrib>Zhou, Wenjiang</creatorcontrib><creatorcontrib>Wang, Yuxi</creatorcontrib><creatorcontrib>Guo, Haichang</creatorcontrib><creatorcontrib>Yang, Han</creatorcontrib><creatorcontrib>Yang, Hongcai</creatorcontrib><creatorcontrib>Jiang, Zhiyao</creatorcontrib><creatorcontrib>Ding, Lili</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Shen, Bo</creatorcontrib><creatorcontrib>Yang, Xuelin</creatorcontrib><creatorcontrib>Song, Bai</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Wujuan</au><au>Xue, Yuanyuan</au><au>Zhou, Wenjiang</au><au>Wang, Yuxi</au><au>Guo, Haichang</au><au>Yang, Han</au><au>Yang, Hongcai</au><au>Jiang, Zhiyao</au><au>Ding, Lili</au><au>Chen, Wei</au><au>Shen, Bo</au><au>Yang, Xuelin</au><au>Song, Bai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Au ion irradiation induces ultralow thermal conductivity in GaN</atitle><jtitle>Applied physics letters</jtitle><date>2024-07-15</date><risdate>2024</risdate><volume>125</volume><issue>3</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Gallium nitride (GaN) is widely considered as a crucial semiconductor for the nuclear industry and space explorations due to its superior radiation hardness. Despite extensive studies of the electronic and optical properties of irradiated GaN, the effects of particle irradiation on the thermal properties remain largely unexplored. Here, we begin with single-crystalline GaN and employ an accelerator equipped with heavy gold ions (Au2+) as the radiation source in order to imitate extreme environments and maximize lattice damages. Eight different irradiated samples are prepared with the fluence of Au2+ spanning four orders of magnitude from 1011 to 1015 cm−2. The thermal conductivity (κ) of the ion-affected regions is measured using the laser pump–probe technique of frequency-domain thermoreflectance. We find that κ decreased consistently and notably with increasing irradiation fluence and observe a transition from crystal to glass-like thermal transport. Remarkably, the room-temperature κ of the GaN sample with the highest Au2+ fluence of 1 × 1015 cm−2 reaches about 1 Wm−1 K−1, which is two orders of magnitude lower than the κ of pristine GaN and approaches the theoretical minimum. A Callaway-type model captures the phonon–point defect scattering in samples with relatively low ion fluences. At higher fluences, the increased defect types and densities, together with the formation of nitrogen bubbles, further suppress phonon transport. Our findings are instrumental in fundamentally understanding the impact of heavy-ion irradiation on thermal transport and may prove useful for the application of GaN-based devices in radiation-intense environments.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0220863</doi><tpages>7</tpages><orcidid>https://orcid.org/0009-0008-6138-1026</orcidid><orcidid>https://orcid.org/0000-0001-5152-5075</orcidid><orcidid>https://orcid.org/0009-0000-8900-0565</orcidid><orcidid>https://orcid.org/0000-0003-3013-9831</orcidid><orcidid>https://orcid.org/0000-0002-6303-1125</orcidid><orcidid>https://orcid.org/0009-0008-8475-7049</orcidid><orcidid>https://orcid.org/0000-0001-5555-0024</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2024-07, Vol.125 (3) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0220863 |
source | AIP Journals Complete |
subjects | Crystal defects Extreme environments Fluence Gallium nitrides Heat conductivity Heat transfer Heavy ions Ion irradiation Optical properties Phonons Point defects Radiation Radiation damage Radiation sources Room temperature Single crystals Thermal conductivity Thermodynamic properties |
title | Au ion irradiation induces ultralow thermal conductivity in GaN |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T05%3A21%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Au%20ion%20irradiation%20induces%20ultralow%20thermal%20conductivity%20in%20GaN&rft.jtitle=Applied%20physics%20letters&rft.au=Yan,%20Wujuan&rft.date=2024-07-15&rft.volume=125&rft.issue=3&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0220863&rft_dat=%3Cproquest_scita%3E3081894368%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081894368&rft_id=info:pmid/&rfr_iscdi=true |