Au ion irradiation induces ultralow thermal conductivity in GaN

Gallium nitride (GaN) is widely considered as a crucial semiconductor for the nuclear industry and space explorations due to its superior radiation hardness. Despite extensive studies of the electronic and optical properties of irradiated GaN, the effects of particle irradiation on the thermal prope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2024-07, Vol.125 (3)
Hauptverfasser: Yan, Wujuan, Xue, Yuanyuan, Zhou, Wenjiang, Wang, Yuxi, Guo, Haichang, Yang, Han, Yang, Hongcai, Jiang, Zhiyao, Ding, Lili, Chen, Wei, Shen, Bo, Yang, Xuelin, Song, Bai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Applied physics letters
container_volume 125
creator Yan, Wujuan
Xue, Yuanyuan
Zhou, Wenjiang
Wang, Yuxi
Guo, Haichang
Yang, Han
Yang, Hongcai
Jiang, Zhiyao
Ding, Lili
Chen, Wei
Shen, Bo
Yang, Xuelin
Song, Bai
description Gallium nitride (GaN) is widely considered as a crucial semiconductor for the nuclear industry and space explorations due to its superior radiation hardness. Despite extensive studies of the electronic and optical properties of irradiated GaN, the effects of particle irradiation on the thermal properties remain largely unexplored. Here, we begin with single-crystalline GaN and employ an accelerator equipped with heavy gold ions (Au2+) as the radiation source in order to imitate extreme environments and maximize lattice damages. Eight different irradiated samples are prepared with the fluence of Au2+ spanning four orders of magnitude from 1011 to 1015 cm−2. The thermal conductivity (κ) of the ion-affected regions is measured using the laser pump–probe technique of frequency-domain thermoreflectance. We find that κ decreased consistently and notably with increasing irradiation fluence and observe a transition from crystal to glass-like thermal transport. Remarkably, the room-temperature κ of the GaN sample with the highest Au2+ fluence of 1 × 1015 cm−2 reaches about 1 Wm−1 K−1, which is two orders of magnitude lower than the κ of pristine GaN and approaches the theoretical minimum. A Callaway-type model captures the phonon–point defect scattering in samples with relatively low ion fluences. At higher fluences, the increased defect types and densities, together with the formation of nitrogen bubbles, further suppress phonon transport. Our findings are instrumental in fundamentally understanding the impact of heavy-ion irradiation on thermal transport and may prove useful for the application of GaN-based devices in radiation-intense environments.
doi_str_mv 10.1063/5.0220863
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0220863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3081894368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-3b98d1c07f1172425d60d8b0d31efe031723bc137ea8aa63829688a5e2b741543</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmNw4BtU4gRShx03aXpC0zQG0gQXOEdpmopO3TqSFLRvT_fnzMnP9k9-8mPsFmGCIOlRTIBzUJLO2Aghz1NCVOdsBACUykLgJbsKYTW0ghON2NO0T5pukzTem6ox8aA3VW9dSPo2etN2v0n8cn5t2sR2-01sfpq4G6hkYd6u2UVt2uBuTnXMPp_nH7OXdPm-eJ1Nl6lFxWNKZaEqtJDXiDnPuKgkVKqEitDVDmgYUmmRcmeUMZIUL6RSRjhe5hmKjMbs7nh367vv3oWoV13vN4OlJlCoioykGqj7I2V9F4J3td76Zm38TiPofT5a6FM-A_twZINt4uHxf-A_uGdi-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081894368</pqid></control><display><type>article</type><title>Au ion irradiation induces ultralow thermal conductivity in GaN</title><source>AIP Journals Complete</source><creator>Yan, Wujuan ; Xue, Yuanyuan ; Zhou, Wenjiang ; Wang, Yuxi ; Guo, Haichang ; Yang, Han ; Yang, Hongcai ; Jiang, Zhiyao ; Ding, Lili ; Chen, Wei ; Shen, Bo ; Yang, Xuelin ; Song, Bai</creator><creatorcontrib>Yan, Wujuan ; Xue, Yuanyuan ; Zhou, Wenjiang ; Wang, Yuxi ; Guo, Haichang ; Yang, Han ; Yang, Hongcai ; Jiang, Zhiyao ; Ding, Lili ; Chen, Wei ; Shen, Bo ; Yang, Xuelin ; Song, Bai</creatorcontrib><description>Gallium nitride (GaN) is widely considered as a crucial semiconductor for the nuclear industry and space explorations due to its superior radiation hardness. Despite extensive studies of the electronic and optical properties of irradiated GaN, the effects of particle irradiation on the thermal properties remain largely unexplored. Here, we begin with single-crystalline GaN and employ an accelerator equipped with heavy gold ions (Au2+) as the radiation source in order to imitate extreme environments and maximize lattice damages. Eight different irradiated samples are prepared with the fluence of Au2+ spanning four orders of magnitude from 1011 to 1015 cm−2. The thermal conductivity (κ) of the ion-affected regions is measured using the laser pump–probe technique of frequency-domain thermoreflectance. We find that κ decreased consistently and notably with increasing irradiation fluence and observe a transition from crystal to glass-like thermal transport. Remarkably, the room-temperature κ of the GaN sample with the highest Au2+ fluence of 1 × 1015 cm−2 reaches about 1 Wm−1 K−1, which is two orders of magnitude lower than the κ of pristine GaN and approaches the theoretical minimum. A Callaway-type model captures the phonon–point defect scattering in samples with relatively low ion fluences. At higher fluences, the increased defect types and densities, together with the formation of nitrogen bubbles, further suppress phonon transport. Our findings are instrumental in fundamentally understanding the impact of heavy-ion irradiation on thermal transport and may prove useful for the application of GaN-based devices in radiation-intense environments.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0220863</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Crystal defects ; Extreme environments ; Fluence ; Gallium nitrides ; Heat conductivity ; Heat transfer ; Heavy ions ; Ion irradiation ; Optical properties ; Phonons ; Point defects ; Radiation ; Radiation damage ; Radiation sources ; Room temperature ; Single crystals ; Thermal conductivity ; Thermodynamic properties</subject><ispartof>Applied physics letters, 2024-07, Vol.125 (3)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-3b98d1c07f1172425d60d8b0d31efe031723bc137ea8aa63829688a5e2b741543</cites><orcidid>0009-0008-6138-1026 ; 0000-0001-5152-5075 ; 0009-0000-8900-0565 ; 0000-0003-3013-9831 ; 0000-0002-6303-1125 ; 0009-0008-8475-7049 ; 0000-0001-5555-0024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0220863$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4510,27923,27924,76155</link.rule.ids></links><search><creatorcontrib>Yan, Wujuan</creatorcontrib><creatorcontrib>Xue, Yuanyuan</creatorcontrib><creatorcontrib>Zhou, Wenjiang</creatorcontrib><creatorcontrib>Wang, Yuxi</creatorcontrib><creatorcontrib>Guo, Haichang</creatorcontrib><creatorcontrib>Yang, Han</creatorcontrib><creatorcontrib>Yang, Hongcai</creatorcontrib><creatorcontrib>Jiang, Zhiyao</creatorcontrib><creatorcontrib>Ding, Lili</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Shen, Bo</creatorcontrib><creatorcontrib>Yang, Xuelin</creatorcontrib><creatorcontrib>Song, Bai</creatorcontrib><title>Au ion irradiation induces ultralow thermal conductivity in GaN</title><title>Applied physics letters</title><description>Gallium nitride (GaN) is widely considered as a crucial semiconductor for the nuclear industry and space explorations due to its superior radiation hardness. Despite extensive studies of the electronic and optical properties of irradiated GaN, the effects of particle irradiation on the thermal properties remain largely unexplored. Here, we begin with single-crystalline GaN and employ an accelerator equipped with heavy gold ions (Au2+) as the radiation source in order to imitate extreme environments and maximize lattice damages. Eight different irradiated samples are prepared with the fluence of Au2+ spanning four orders of magnitude from 1011 to 1015 cm−2. The thermal conductivity (κ) of the ion-affected regions is measured using the laser pump–probe technique of frequency-domain thermoreflectance. We find that κ decreased consistently and notably with increasing irradiation fluence and observe a transition from crystal to glass-like thermal transport. Remarkably, the room-temperature κ of the GaN sample with the highest Au2+ fluence of 1 × 1015 cm−2 reaches about 1 Wm−1 K−1, which is two orders of magnitude lower than the κ of pristine GaN and approaches the theoretical minimum. A Callaway-type model captures the phonon–point defect scattering in samples with relatively low ion fluences. At higher fluences, the increased defect types and densities, together with the formation of nitrogen bubbles, further suppress phonon transport. Our findings are instrumental in fundamentally understanding the impact of heavy-ion irradiation on thermal transport and may prove useful for the application of GaN-based devices in radiation-intense environments.</description><subject>Crystal defects</subject><subject>Extreme environments</subject><subject>Fluence</subject><subject>Gallium nitrides</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Heavy ions</subject><subject>Ion irradiation</subject><subject>Optical properties</subject><subject>Phonons</subject><subject>Point defects</subject><subject>Radiation</subject><subject>Radiation damage</subject><subject>Radiation sources</subject><subject>Room temperature</subject><subject>Single crystals</subject><subject>Thermal conductivity</subject><subject>Thermodynamic properties</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSMEEmNw4BtU4gRShx03aXpC0zQG0gQXOEdpmopO3TqSFLRvT_fnzMnP9k9-8mPsFmGCIOlRTIBzUJLO2Aghz1NCVOdsBACUykLgJbsKYTW0ghON2NO0T5pukzTem6ox8aA3VW9dSPo2etN2v0n8cn5t2sR2-01sfpq4G6hkYd6u2UVt2uBuTnXMPp_nH7OXdPm-eJ1Nl6lFxWNKZaEqtJDXiDnPuKgkVKqEitDVDmgYUmmRcmeUMZIUL6RSRjhe5hmKjMbs7nh367vv3oWoV13vN4OlJlCoioykGqj7I2V9F4J3td76Zm38TiPofT5a6FM-A_twZINt4uHxf-A_uGdi-Q</recordid><startdate>20240715</startdate><enddate>20240715</enddate><creator>Yan, Wujuan</creator><creator>Xue, Yuanyuan</creator><creator>Zhou, Wenjiang</creator><creator>Wang, Yuxi</creator><creator>Guo, Haichang</creator><creator>Yang, Han</creator><creator>Yang, Hongcai</creator><creator>Jiang, Zhiyao</creator><creator>Ding, Lili</creator><creator>Chen, Wei</creator><creator>Shen, Bo</creator><creator>Yang, Xuelin</creator><creator>Song, Bai</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0008-6138-1026</orcidid><orcidid>https://orcid.org/0000-0001-5152-5075</orcidid><orcidid>https://orcid.org/0009-0000-8900-0565</orcidid><orcidid>https://orcid.org/0000-0003-3013-9831</orcidid><orcidid>https://orcid.org/0000-0002-6303-1125</orcidid><orcidid>https://orcid.org/0009-0008-8475-7049</orcidid><orcidid>https://orcid.org/0000-0001-5555-0024</orcidid></search><sort><creationdate>20240715</creationdate><title>Au ion irradiation induces ultralow thermal conductivity in GaN</title><author>Yan, Wujuan ; Xue, Yuanyuan ; Zhou, Wenjiang ; Wang, Yuxi ; Guo, Haichang ; Yang, Han ; Yang, Hongcai ; Jiang, Zhiyao ; Ding, Lili ; Chen, Wei ; Shen, Bo ; Yang, Xuelin ; Song, Bai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-3b98d1c07f1172425d60d8b0d31efe031723bc137ea8aa63829688a5e2b741543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Crystal defects</topic><topic>Extreme environments</topic><topic>Fluence</topic><topic>Gallium nitrides</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Heavy ions</topic><topic>Ion irradiation</topic><topic>Optical properties</topic><topic>Phonons</topic><topic>Point defects</topic><topic>Radiation</topic><topic>Radiation damage</topic><topic>Radiation sources</topic><topic>Room temperature</topic><topic>Single crystals</topic><topic>Thermal conductivity</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Wujuan</creatorcontrib><creatorcontrib>Xue, Yuanyuan</creatorcontrib><creatorcontrib>Zhou, Wenjiang</creatorcontrib><creatorcontrib>Wang, Yuxi</creatorcontrib><creatorcontrib>Guo, Haichang</creatorcontrib><creatorcontrib>Yang, Han</creatorcontrib><creatorcontrib>Yang, Hongcai</creatorcontrib><creatorcontrib>Jiang, Zhiyao</creatorcontrib><creatorcontrib>Ding, Lili</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Shen, Bo</creatorcontrib><creatorcontrib>Yang, Xuelin</creatorcontrib><creatorcontrib>Song, Bai</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Wujuan</au><au>Xue, Yuanyuan</au><au>Zhou, Wenjiang</au><au>Wang, Yuxi</au><au>Guo, Haichang</au><au>Yang, Han</au><au>Yang, Hongcai</au><au>Jiang, Zhiyao</au><au>Ding, Lili</au><au>Chen, Wei</au><au>Shen, Bo</au><au>Yang, Xuelin</au><au>Song, Bai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Au ion irradiation induces ultralow thermal conductivity in GaN</atitle><jtitle>Applied physics letters</jtitle><date>2024-07-15</date><risdate>2024</risdate><volume>125</volume><issue>3</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Gallium nitride (GaN) is widely considered as a crucial semiconductor for the nuclear industry and space explorations due to its superior radiation hardness. Despite extensive studies of the electronic and optical properties of irradiated GaN, the effects of particle irradiation on the thermal properties remain largely unexplored. Here, we begin with single-crystalline GaN and employ an accelerator equipped with heavy gold ions (Au2+) as the radiation source in order to imitate extreme environments and maximize lattice damages. Eight different irradiated samples are prepared with the fluence of Au2+ spanning four orders of magnitude from 1011 to 1015 cm−2. The thermal conductivity (κ) of the ion-affected regions is measured using the laser pump–probe technique of frequency-domain thermoreflectance. We find that κ decreased consistently and notably with increasing irradiation fluence and observe a transition from crystal to glass-like thermal transport. Remarkably, the room-temperature κ of the GaN sample with the highest Au2+ fluence of 1 × 1015 cm−2 reaches about 1 Wm−1 K−1, which is two orders of magnitude lower than the κ of pristine GaN and approaches the theoretical minimum. A Callaway-type model captures the phonon–point defect scattering in samples with relatively low ion fluences. At higher fluences, the increased defect types and densities, together with the formation of nitrogen bubbles, further suppress phonon transport. Our findings are instrumental in fundamentally understanding the impact of heavy-ion irradiation on thermal transport and may prove useful for the application of GaN-based devices in radiation-intense environments.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0220863</doi><tpages>7</tpages><orcidid>https://orcid.org/0009-0008-6138-1026</orcidid><orcidid>https://orcid.org/0000-0001-5152-5075</orcidid><orcidid>https://orcid.org/0009-0000-8900-0565</orcidid><orcidid>https://orcid.org/0000-0003-3013-9831</orcidid><orcidid>https://orcid.org/0000-0002-6303-1125</orcidid><orcidid>https://orcid.org/0009-0008-8475-7049</orcidid><orcidid>https://orcid.org/0000-0001-5555-0024</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2024-07, Vol.125 (3)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_5_0220863
source AIP Journals Complete
subjects Crystal defects
Extreme environments
Fluence
Gallium nitrides
Heat conductivity
Heat transfer
Heavy ions
Ion irradiation
Optical properties
Phonons
Point defects
Radiation
Radiation damage
Radiation sources
Room temperature
Single crystals
Thermal conductivity
Thermodynamic properties
title Au ion irradiation induces ultralow thermal conductivity in GaN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T05%3A21%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Au%20ion%20irradiation%20induces%20ultralow%20thermal%20conductivity%20in%20GaN&rft.jtitle=Applied%20physics%20letters&rft.au=Yan,%20Wujuan&rft.date=2024-07-15&rft.volume=125&rft.issue=3&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0220863&rft_dat=%3Cproquest_scita%3E3081894368%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081894368&rft_id=info:pmid/&rfr_iscdi=true