Machine learning-driven image synthesis and analysis applications for inertial confinement fusion (invited)
Recent fusion breakeven [Abu-Shawareb et al., Phys. Rev. Lett. 132, 065102 (2024)] in the National Ignition Facility (NIF) motivates an integrated approach to data analysis from multiple diagnostics. Deep neural networks provide a seamless framework for multi-modal data fusion, automated data analys...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2024-12, Vol.95 (12) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Review of scientific instruments |
container_volume | 95 |
creator | Wolfe, Bradley T. Chu, Pinghan Nguyen-Fotiadis, Nga T. T. Zhang, Xinhua Alvarado Alvarez, Mariana Wang, Zhehui |
description | Recent fusion breakeven [Abu-Shawareb et al., Phys. Rev. Lett. 132, 065102 (2024)] in the National Ignition Facility (NIF) motivates an integrated approach to data analysis from multiple diagnostics. Deep neural networks provide a seamless framework for multi-modal data fusion, automated data analysis, optimization, and uncertainty quantification [Wang et al., arXiv:2401.08390 (2024)]. Here, we summarize different neural network methods for x-ray and neutron imaging data from NIF. To compensate for the small experimental datasets, both model based physics-informed synthetic data generation and deep neural network methods, such as generative adversarial networks, have been successfully implemented to allow a variety of automated workflows in x-ray and neutron image processing. We highlight results in noise emulation, contour analysis for low-mode analysis and asymmetry, denoising, and super-resolution. Further advances in the integrated multi-modal imaging, in sync with experimental validation and uncertainty quantification, will help with the ongoing experimental optimization in NIF, as well as the maturation of alternate inertial confinement fusion (ICF) platforms such as double-shells. |
doi_str_mv | 10.1063/5.0219412 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0219412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146925412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-3db65e0b26cd4a48b65e72fb9797a80b90e8a819a465ca1c3745d164766187373</originalsourceid><addsrcrecordid>eNp90U1LwzAYB_Agis7pwS8gAS9TqCbN-1GGb6B40XNJ03TLbNOZtIN9e-M2PXgwEMIDP_6Q_wPAGUbXGHFyw65RjhXF-R4YYSRVJnhO9sEIIUIzLqg8AscxLlA6DONDcEQUl5JSNQIfL9rMnbewsTp452dZFdzKeuhaPbMwrn0_t9FFqH2Vrm7Wm2G5bJzRvet8hHUXYEoIvdMNNJ2v09Ba38N6iAnAifMr19vq8gQc1LqJ9nT3jsH7_d3b9DF7fn14mt4-ZyYnss9IVXJmUZlzU1FN5fck8rpUQgktUamQlVpipSlnRmNDBGUV5lRwjqUggozBZJu7DN3nYGNftC4a2zTa226IBcGUq5ylvhK9-EMX3RDSNzeKSU4UQ0ldbpUJXYzB1sUypH7CusCo-N5AwYrdBpI93yUOZWurX_lTeQJXWxCN6zcV_pP2BYcPjYE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3145863950</pqid></control><display><type>article</type><title>Machine learning-driven image synthesis and analysis applications for inertial confinement fusion (invited)</title><source>AIP Journals Complete</source><creator>Wolfe, Bradley T. ; Chu, Pinghan ; Nguyen-Fotiadis, Nga T. T. ; Zhang, Xinhua ; Alvarado Alvarez, Mariana ; Wang, Zhehui</creator><creatorcontrib>Wolfe, Bradley T. ; Chu, Pinghan ; Nguyen-Fotiadis, Nga T. T. ; Zhang, Xinhua ; Alvarado Alvarez, Mariana ; Wang, Zhehui</creatorcontrib><description>Recent fusion breakeven [Abu-Shawareb et al., Phys. Rev. Lett. 132, 065102 (2024)] in the National Ignition Facility (NIF) motivates an integrated approach to data analysis from multiple diagnostics. Deep neural networks provide a seamless framework for multi-modal data fusion, automated data analysis, optimization, and uncertainty quantification [Wang et al., arXiv:2401.08390 (2024)]. Here, we summarize different neural network methods for x-ray and neutron imaging data from NIF. To compensate for the small experimental datasets, both model based physics-informed synthetic data generation and deep neural network methods, such as generative adversarial networks, have been successfully implemented to allow a variety of automated workflows in x-ray and neutron image processing. We highlight results in noise emulation, contour analysis for low-mode analysis and asymmetry, denoising, and super-resolution. Further advances in the integrated multi-modal imaging, in sync with experimental validation and uncertainty quantification, will help with the ongoing experimental optimization in NIF, as well as the maturation of alternate inertial confinement fusion (ICF) platforms such as double-shells.</description><identifier>ISSN: 0034-6748</identifier><identifier>ISSN: 1089-7623</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/5.0219412</identifier><identifier>PMID: 39688449</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Artificial neural networks ; Automation ; Data analysis ; Data integration ; Generative adversarial networks ; Image processing ; Image resolution ; Inertial confinement fusion ; Integrated approach ; Machine learning ; Modal data ; Neural networks ; Optimization ; Synthetic data ; Uncertainty ; X ray imagery</subject><ispartof>Review of scientific instruments, 2024-12, Vol.95 (12)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-3db65e0b26cd4a48b65e72fb9797a80b90e8a819a465ca1c3745d164766187373</cites><orcidid>0000-0003-1372-2910 ; 0000-0003-0473-6843 ; 0009-0007-8358-6711 ; 0000-0002-6830-1614 ; 0000-0003-3672-6666 ; 0000-0001-7826-4063</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/5.0219412$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39688449$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wolfe, Bradley T.</creatorcontrib><creatorcontrib>Chu, Pinghan</creatorcontrib><creatorcontrib>Nguyen-Fotiadis, Nga T. T.</creatorcontrib><creatorcontrib>Zhang, Xinhua</creatorcontrib><creatorcontrib>Alvarado Alvarez, Mariana</creatorcontrib><creatorcontrib>Wang, Zhehui</creatorcontrib><title>Machine learning-driven image synthesis and analysis applications for inertial confinement fusion (invited)</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>Recent fusion breakeven [Abu-Shawareb et al., Phys. Rev. Lett. 132, 065102 (2024)] in the National Ignition Facility (NIF) motivates an integrated approach to data analysis from multiple diagnostics. Deep neural networks provide a seamless framework for multi-modal data fusion, automated data analysis, optimization, and uncertainty quantification [Wang et al., arXiv:2401.08390 (2024)]. Here, we summarize different neural network methods for x-ray and neutron imaging data from NIF. To compensate for the small experimental datasets, both model based physics-informed synthetic data generation and deep neural network methods, such as generative adversarial networks, have been successfully implemented to allow a variety of automated workflows in x-ray and neutron image processing. We highlight results in noise emulation, contour analysis for low-mode analysis and asymmetry, denoising, and super-resolution. Further advances in the integrated multi-modal imaging, in sync with experimental validation and uncertainty quantification, will help with the ongoing experimental optimization in NIF, as well as the maturation of alternate inertial confinement fusion (ICF) platforms such as double-shells.</description><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Data analysis</subject><subject>Data integration</subject><subject>Generative adversarial networks</subject><subject>Image processing</subject><subject>Image resolution</subject><subject>Inertial confinement fusion</subject><subject>Integrated approach</subject><subject>Machine learning</subject><subject>Modal data</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Synthetic data</subject><subject>Uncertainty</subject><subject>X ray imagery</subject><issn>0034-6748</issn><issn>1089-7623</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90U1LwzAYB_Agis7pwS8gAS9TqCbN-1GGb6B40XNJ03TLbNOZtIN9e-M2PXgwEMIDP_6Q_wPAGUbXGHFyw65RjhXF-R4YYSRVJnhO9sEIIUIzLqg8AscxLlA6DONDcEQUl5JSNQIfL9rMnbewsTp452dZFdzKeuhaPbMwrn0_t9FFqH2Vrm7Wm2G5bJzRvet8hHUXYEoIvdMNNJ2v09Ba38N6iAnAifMr19vq8gQc1LqJ9nT3jsH7_d3b9DF7fn14mt4-ZyYnss9IVXJmUZlzU1FN5fck8rpUQgktUamQlVpipSlnRmNDBGUV5lRwjqUggozBZJu7DN3nYGNftC4a2zTa226IBcGUq5ylvhK9-EMX3RDSNzeKSU4UQ0ldbpUJXYzB1sUypH7CusCo-N5AwYrdBpI93yUOZWurX_lTeQJXWxCN6zcV_pP2BYcPjYE</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Wolfe, Bradley T.</creator><creator>Chu, Pinghan</creator><creator>Nguyen-Fotiadis, Nga T. T.</creator><creator>Zhang, Xinhua</creator><creator>Alvarado Alvarez, Mariana</creator><creator>Wang, Zhehui</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1372-2910</orcidid><orcidid>https://orcid.org/0000-0003-0473-6843</orcidid><orcidid>https://orcid.org/0009-0007-8358-6711</orcidid><orcidid>https://orcid.org/0000-0002-6830-1614</orcidid><orcidid>https://orcid.org/0000-0003-3672-6666</orcidid><orcidid>https://orcid.org/0000-0001-7826-4063</orcidid></search><sort><creationdate>20241201</creationdate><title>Machine learning-driven image synthesis and analysis applications for inertial confinement fusion (invited)</title><author>Wolfe, Bradley T. ; Chu, Pinghan ; Nguyen-Fotiadis, Nga T. T. ; Zhang, Xinhua ; Alvarado Alvarez, Mariana ; Wang, Zhehui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-3db65e0b26cd4a48b65e72fb9797a80b90e8a819a465ca1c3745d164766187373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Data analysis</topic><topic>Data integration</topic><topic>Generative adversarial networks</topic><topic>Image processing</topic><topic>Image resolution</topic><topic>Inertial confinement fusion</topic><topic>Integrated approach</topic><topic>Machine learning</topic><topic>Modal data</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Synthetic data</topic><topic>Uncertainty</topic><topic>X ray imagery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolfe, Bradley T.</creatorcontrib><creatorcontrib>Chu, Pinghan</creatorcontrib><creatorcontrib>Nguyen-Fotiadis, Nga T. T.</creatorcontrib><creatorcontrib>Zhang, Xinhua</creatorcontrib><creatorcontrib>Alvarado Alvarez, Mariana</creatorcontrib><creatorcontrib>Wang, Zhehui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolfe, Bradley T.</au><au>Chu, Pinghan</au><au>Nguyen-Fotiadis, Nga T. T.</au><au>Zhang, Xinhua</au><au>Alvarado Alvarez, Mariana</au><au>Wang, Zhehui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning-driven image synthesis and analysis applications for inertial confinement fusion (invited)</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>95</volume><issue>12</issue><issn>0034-6748</issn><issn>1089-7623</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>Recent fusion breakeven [Abu-Shawareb et al., Phys. Rev. Lett. 132, 065102 (2024)] in the National Ignition Facility (NIF) motivates an integrated approach to data analysis from multiple diagnostics. Deep neural networks provide a seamless framework for multi-modal data fusion, automated data analysis, optimization, and uncertainty quantification [Wang et al., arXiv:2401.08390 (2024)]. Here, we summarize different neural network methods for x-ray and neutron imaging data from NIF. To compensate for the small experimental datasets, both model based physics-informed synthetic data generation and deep neural network methods, such as generative adversarial networks, have been successfully implemented to allow a variety of automated workflows in x-ray and neutron image processing. We highlight results in noise emulation, contour analysis for low-mode analysis and asymmetry, denoising, and super-resolution. Further advances in the integrated multi-modal imaging, in sync with experimental validation and uncertainty quantification, will help with the ongoing experimental optimization in NIF, as well as the maturation of alternate inertial confinement fusion (ICF) platforms such as double-shells.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>39688449</pmid><doi>10.1063/5.0219412</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1372-2910</orcidid><orcidid>https://orcid.org/0000-0003-0473-6843</orcidid><orcidid>https://orcid.org/0009-0007-8358-6711</orcidid><orcidid>https://orcid.org/0000-0002-6830-1614</orcidid><orcidid>https://orcid.org/0000-0003-3672-6666</orcidid><orcidid>https://orcid.org/0000-0001-7826-4063</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 2024-12, Vol.95 (12) |
issn | 0034-6748 1089-7623 1089-7623 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0219412 |
source | AIP Journals Complete |
subjects | Artificial neural networks Automation Data analysis Data integration Generative adversarial networks Image processing Image resolution Inertial confinement fusion Integrated approach Machine learning Modal data Neural networks Optimization Synthetic data Uncertainty X ray imagery |
title | Machine learning-driven image synthesis and analysis applications for inertial confinement fusion (invited) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T04%3A15%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning-driven%20image%20synthesis%20and%20analysis%20applications%20for%20inertial%20confinement%20fusion%20(invited)&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Wolfe,%20Bradley%20T.&rft.date=2024-12-01&rft.volume=95&rft.issue=12&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/5.0219412&rft_dat=%3Cproquest_scita%3E3146925412%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3145863950&rft_id=info:pmid/39688449&rfr_iscdi=true |