Generalized quantum master equations can improve the accuracy of semiclassical predictions of multitime correlation functions
Multitime quantum correlation functions are central objects in physical science, offering a direct link between the experimental observables and the dynamics of an underlying model. While experiments such as 2D spectroscopy and quantum control can now measure such quantities, the accurate simulation...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2024-07, Vol.161 (1) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | The Journal of chemical physics |
container_volume | 161 |
creator | Sayer, Thomas Montoya-Castillo, Andrés |
description | Multitime quantum correlation functions are central objects in physical science, offering a direct link between the experimental observables and the dynamics of an underlying model. While experiments such as 2D spectroscopy and quantum control can now measure such quantities, the accurate simulation of such responses remains computationally expensive and sometimes impossible, depending on the system’s complexity. A natural tool to employ is the generalized quantum master equation (GQME), which can offer computational savings by extending reference dynamics at a comparatively trivial cost. However, dynamical methods that can tackle chemical systems with atomistic resolution, such as those in the semiclassical hierarchy, often suffer from poor accuracy, limiting the credence one might lend to their results. By combining work on the accuracy-boosting formulation of semiclassical memory kernels with recent work on the multitime GQME, here we show for the first time that one can exploit a multitime semiclassical GQME to dramatically improve both the accuracy of coarse mean-field Ehrenfest dynamics and obtain orders of magnitude efficiency gains. |
doi_str_mv | 10.1063/5.0219205 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0219205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3074138441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-4eecbdb96bb7dbd18485f576c200782fd8bbe8cdf3fbe87c37e97b0545f5e73d3</originalsourceid><addsrcrecordid>eNp90U1r2zAYB3AxOpY07aFfoAh66QbOJMu25OMIXVcI7NKdjV4eUwXLTvVS6GDffWqc9tBDL3qQ9NMfSQ9CF5SsKWnY93pNStqWpP6ElpSItuBNS07QkuTlom1Is0CnIewIIZSX1Re0YKKt2pqLJfp3CyN4Odi_YPBjkmNMDjsZIngMeR7tNAas5Yit2_vpCXB8ACy1Tl7qZzz1OICzepAhWC0HvPdgrJ5P5U2XhmijdYD15D0Mhzzcp3EmZ-hzL4cA58e6Qn9-3txvfhXb37d3mx_bQpdMxKIC0MqotlGKG2WoqETd17zRJSFclL0RSoHQpmd9rlwzDi1XpK6yAs4MW6HrOTc_4TFBiJ2zQcMwyBGmFDpGeEWZqPKwQlfv6G5Kfsy3m5VoaMmy-jor7acQPPTd3lsn_XNHSffSk67ujj3J9vKYmJQD8yZfm5DBtxkEbePhhz5I-w-hsJci</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3074186123</pqid></control><display><type>article</type><title>Generalized quantum master equations can improve the accuracy of semiclassical predictions of multitime correlation functions</title><source>American Institute of Physics (AIP) Journals</source><creator>Sayer, Thomas ; Montoya-Castillo, Andrés</creator><creatorcontrib>Sayer, Thomas ; Montoya-Castillo, Andrés</creatorcontrib><description>Multitime quantum correlation functions are central objects in physical science, offering a direct link between the experimental observables and the dynamics of an underlying model. While experiments such as 2D spectroscopy and quantum control can now measure such quantities, the accurate simulation of such responses remains computationally expensive and sometimes impossible, depending on the system’s complexity. A natural tool to employ is the generalized quantum master equation (GQME), which can offer computational savings by extending reference dynamics at a comparatively trivial cost. However, dynamical methods that can tackle chemical systems with atomistic resolution, such as those in the semiclassical hierarchy, often suffer from poor accuracy, limiting the credence one might lend to their results. By combining work on the accuracy-boosting formulation of semiclassical memory kernels with recent work on the multitime GQME, here we show for the first time that one can exploit a multitime semiclassical GQME to dramatically improve both the accuracy of coarse mean-field Ehrenfest dynamics and obtain orders of magnitude efficiency gains.</description><identifier>ISSN: 0021-9606</identifier><identifier>ISSN: 1089-7690</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0219205</identifier><identifier>PMID: 38949578</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Accuracy ; Correlation</subject><ispartof>The Journal of chemical physics, 2024-07, Vol.161 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-4eecbdb96bb7dbd18485f576c200782fd8bbe8cdf3fbe87c37e97b0545f5e73d3</cites><orcidid>0000-0001-6156-0835 ; 0000-0003-3037-3695</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0219205$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4510,27923,27924,76155</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38949578$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sayer, Thomas</creatorcontrib><creatorcontrib>Montoya-Castillo, Andrés</creatorcontrib><title>Generalized quantum master equations can improve the accuracy of semiclassical predictions of multitime correlation functions</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Multitime quantum correlation functions are central objects in physical science, offering a direct link between the experimental observables and the dynamics of an underlying model. While experiments such as 2D spectroscopy and quantum control can now measure such quantities, the accurate simulation of such responses remains computationally expensive and sometimes impossible, depending on the system’s complexity. A natural tool to employ is the generalized quantum master equation (GQME), which can offer computational savings by extending reference dynamics at a comparatively trivial cost. However, dynamical methods that can tackle chemical systems with atomistic resolution, such as those in the semiclassical hierarchy, often suffer from poor accuracy, limiting the credence one might lend to their results. By combining work on the accuracy-boosting formulation of semiclassical memory kernels with recent work on the multitime GQME, here we show for the first time that one can exploit a multitime semiclassical GQME to dramatically improve both the accuracy of coarse mean-field Ehrenfest dynamics and obtain orders of magnitude efficiency gains.</description><subject>Accuracy</subject><subject>Correlation</subject><issn>0021-9606</issn><issn>1089-7690</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90U1r2zAYB3AxOpY07aFfoAh66QbOJMu25OMIXVcI7NKdjV4eUwXLTvVS6GDffWqc9tBDL3qQ9NMfSQ9CF5SsKWnY93pNStqWpP6ElpSItuBNS07QkuTlom1Is0CnIewIIZSX1Re0YKKt2pqLJfp3CyN4Odi_YPBjkmNMDjsZIngMeR7tNAas5Yit2_vpCXB8ACy1Tl7qZzz1OICzepAhWC0HvPdgrJ5P5U2XhmijdYD15D0Mhzzcp3EmZ-hzL4cA58e6Qn9-3txvfhXb37d3mx_bQpdMxKIC0MqotlGKG2WoqETd17zRJSFclL0RSoHQpmd9rlwzDi1XpK6yAs4MW6HrOTc_4TFBiJ2zQcMwyBGmFDpGeEWZqPKwQlfv6G5Kfsy3m5VoaMmy-jor7acQPPTd3lsn_XNHSffSk67ujj3J9vKYmJQD8yZfm5DBtxkEbePhhz5I-w-hsJci</recordid><startdate>20240707</startdate><enddate>20240707</enddate><creator>Sayer, Thomas</creator><creator>Montoya-Castillo, Andrés</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6156-0835</orcidid><orcidid>https://orcid.org/0000-0003-3037-3695</orcidid></search><sort><creationdate>20240707</creationdate><title>Generalized quantum master equations can improve the accuracy of semiclassical predictions of multitime correlation functions</title><author>Sayer, Thomas ; Montoya-Castillo, Andrés</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-4eecbdb96bb7dbd18485f576c200782fd8bbe8cdf3fbe87c37e97b0545f5e73d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Correlation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sayer, Thomas</creatorcontrib><creatorcontrib>Montoya-Castillo, Andrés</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sayer, Thomas</au><au>Montoya-Castillo, Andrés</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized quantum master equations can improve the accuracy of semiclassical predictions of multitime correlation functions</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2024-07-07</date><risdate>2024</risdate><volume>161</volume><issue>1</issue><issn>0021-9606</issn><issn>1089-7690</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Multitime quantum correlation functions are central objects in physical science, offering a direct link between the experimental observables and the dynamics of an underlying model. While experiments such as 2D spectroscopy and quantum control can now measure such quantities, the accurate simulation of such responses remains computationally expensive and sometimes impossible, depending on the system’s complexity. A natural tool to employ is the generalized quantum master equation (GQME), which can offer computational savings by extending reference dynamics at a comparatively trivial cost. However, dynamical methods that can tackle chemical systems with atomistic resolution, such as those in the semiclassical hierarchy, often suffer from poor accuracy, limiting the credence one might lend to their results. By combining work on the accuracy-boosting formulation of semiclassical memory kernels with recent work on the multitime GQME, here we show for the first time that one can exploit a multitime semiclassical GQME to dramatically improve both the accuracy of coarse mean-field Ehrenfest dynamics and obtain orders of magnitude efficiency gains.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>38949578</pmid><doi>10.1063/5.0219205</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6156-0835</orcidid><orcidid>https://orcid.org/0000-0003-3037-3695</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2024-07, Vol.161 (1) |
issn | 0021-9606 1089-7690 1089-7690 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0219205 |
source | American Institute of Physics (AIP) Journals |
subjects | Accuracy Correlation |
title | Generalized quantum master equations can improve the accuracy of semiclassical predictions of multitime correlation functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A24%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20quantum%20master%20equations%20can%20improve%20the%20accuracy%20of%20semiclassical%20predictions%20of%20multitime%20correlation%20functions&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Sayer,%20Thomas&rft.date=2024-07-07&rft.volume=161&rft.issue=1&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0219205&rft_dat=%3Cproquest_scita%3E3074138441%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3074186123&rft_id=info:pmid/38949578&rfr_iscdi=true |