Comparison of heart disease prediction between basics and a Hybrid machine learning (ML) technique

Heart disease is one of the main causes of death worldwide. Machine learning has been discovered tobe useful in creating predictions from massive amounts of data. We’ve also seen machine learning techniques used in recentadvances in a variety of fields such as medical, finance and even retail. In th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yu, Soo Jun, Dollmat, Khairi Shazwan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3153
creator Yu, Soo Jun
Dollmat, Khairi Shazwan
description Heart disease is one of the main causes of death worldwide. Machine learning has been discovered tobe useful in creating predictions from massive amounts of data. We’ve also seen machine learning techniques used in recentadvances in a variety of fields such as medical, finance and even retail. In this research, we used a few traditional ML techniques which is K-Nearest Neighbors (K-NN), Support Vector Machine (SVM), Naïve Bayes, Decision Tree, Random Forest, Logistic Regression, and a Hybrid ML technique that combines Random Forest, SVM and K-NN. We achieved a great performance level with 63.33% accuracy rate of using the hybrid ML model in predicting heart disease. Before applying machine learning techniques, we used feature selection including BORUTA and RFE to identify the Top 10 variables from the dataset to compare with non-using feature selection to build an effective predictive model. Other thanthat, several performance metrics are used to evaluate the results.
doi_str_mv 10.1063/5.0218147
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0218147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072887146</sourcerecordid><originalsourceid>FETCH-LOGICAL-p637-f287b4ecb1524f87215cbbc53420724ced2114643019de05cd65072366ac6013</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMoWKsL_0HAjQpTc_OcLqVUK1Rc6MJdyGtsSjszJlOk_96UdnUW5zv3cA9Ct0AmQCR7EhNCoQauztAIhIBKSZDnaETIlFeUs-9LdJXzmhA6VaoeITvrtr1JMXct7hq8CiYN2MccTA64T8FHN8Ti2TD8hVDU5OgyNq3HBi_2NkWPt8atYhvwpoTb2P7g-_flAx6CW7Xxdxeu0UVjNjncnHSMPl_mX7NFtfx4fZs9L6teMlU1tFaWB2dBUN7UioJw1jrBOCWKchc8BeCSMwJTH4hwXopiMCmNkwTYGN0dr_apK6V50Otul9pSqFnh6lqVdKEej1R2cTCHz3Sf4takvQaiDwtqoU8Lsn-UKWGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3072887146</pqid></control><display><type>conference_proceeding</type><title>Comparison of heart disease prediction between basics and a Hybrid machine learning (ML) technique</title><source>AIP Journals Complete</source><creator>Yu, Soo Jun ; Dollmat, Khairi Shazwan</creator><contributor>Haw, Su-Cheng ; Kannan, Ramakrishnan ; Isa, Wan Noorshahida Binti Mohd ; Ooi, Shih-Yin</contributor><creatorcontrib>Yu, Soo Jun ; Dollmat, Khairi Shazwan ; Haw, Su-Cheng ; Kannan, Ramakrishnan ; Isa, Wan Noorshahida Binti Mohd ; Ooi, Shih-Yin</creatorcontrib><description>Heart disease is one of the main causes of death worldwide. Machine learning has been discovered tobe useful in creating predictions from massive amounts of data. We’ve also seen machine learning techniques used in recentadvances in a variety of fields such as medical, finance and even retail. In this research, we used a few traditional ML techniques which is K-Nearest Neighbors (K-NN), Support Vector Machine (SVM), Naïve Bayes, Decision Tree, Random Forest, Logistic Regression, and a Hybrid ML technique that combines Random Forest, SVM and K-NN. We achieved a great performance level with 63.33% accuracy rate of using the hybrid ML model in predicting heart disease. Before applying machine learning techniques, we used feature selection including BORUTA and RFE to identify the Top 10 variables from the dataset to compare with non-using feature selection to build an effective predictive model. Other thanthat, several performance metrics are used to evaluate the results.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0218147</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Cardiovascular disease ; Decision trees ; Feature selection ; Heart diseases ; Machine learning ; Performance measurement ; Prediction models ; Support vector machines</subject><ispartof>AIP conference proceedings, 2024, Vol.3153 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0218147$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Haw, Su-Cheng</contributor><contributor>Kannan, Ramakrishnan</contributor><contributor>Isa, Wan Noorshahida Binti Mohd</contributor><contributor>Ooi, Shih-Yin</contributor><creatorcontrib>Yu, Soo Jun</creatorcontrib><creatorcontrib>Dollmat, Khairi Shazwan</creatorcontrib><title>Comparison of heart disease prediction between basics and a Hybrid machine learning (ML) technique</title><title>AIP conference proceedings</title><description>Heart disease is one of the main causes of death worldwide. Machine learning has been discovered tobe useful in creating predictions from massive amounts of data. We’ve also seen machine learning techniques used in recentadvances in a variety of fields such as medical, finance and even retail. In this research, we used a few traditional ML techniques which is K-Nearest Neighbors (K-NN), Support Vector Machine (SVM), Naïve Bayes, Decision Tree, Random Forest, Logistic Regression, and a Hybrid ML technique that combines Random Forest, SVM and K-NN. We achieved a great performance level with 63.33% accuracy rate of using the hybrid ML model in predicting heart disease. Before applying machine learning techniques, we used feature selection including BORUTA and RFE to identify the Top 10 variables from the dataset to compare with non-using feature selection to build an effective predictive model. Other thanthat, several performance metrics are used to evaluate the results.</description><subject>Cardiovascular disease</subject><subject>Decision trees</subject><subject>Feature selection</subject><subject>Heart diseases</subject><subject>Machine learning</subject><subject>Performance measurement</subject><subject>Prediction models</subject><subject>Support vector machines</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEtLAzEUhYMoWKsL_0HAjQpTc_OcLqVUK1Rc6MJdyGtsSjszJlOk_96UdnUW5zv3cA9Ct0AmQCR7EhNCoQauztAIhIBKSZDnaETIlFeUs-9LdJXzmhA6VaoeITvrtr1JMXct7hq8CiYN2MccTA64T8FHN8Ti2TD8hVDU5OgyNq3HBi_2NkWPt8atYhvwpoTb2P7g-_flAx6CW7Xxdxeu0UVjNjncnHSMPl_mX7NFtfx4fZs9L6teMlU1tFaWB2dBUN7UioJw1jrBOCWKchc8BeCSMwJTH4hwXopiMCmNkwTYGN0dr_apK6V50Otul9pSqFnh6lqVdKEej1R2cTCHz3Sf4takvQaiDwtqoU8Lsn-UKWGA</recordid><startdate>20240627</startdate><enddate>20240627</enddate><creator>Yu, Soo Jun</creator><creator>Dollmat, Khairi Shazwan</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240627</creationdate><title>Comparison of heart disease prediction between basics and a Hybrid machine learning (ML) technique</title><author>Yu, Soo Jun ; Dollmat, Khairi Shazwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p637-f287b4ecb1524f87215cbbc53420724ced2114643019de05cd65072366ac6013</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cardiovascular disease</topic><topic>Decision trees</topic><topic>Feature selection</topic><topic>Heart diseases</topic><topic>Machine learning</topic><topic>Performance measurement</topic><topic>Prediction models</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Soo Jun</creatorcontrib><creatorcontrib>Dollmat, Khairi Shazwan</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Soo Jun</au><au>Dollmat, Khairi Shazwan</au><au>Haw, Su-Cheng</au><au>Kannan, Ramakrishnan</au><au>Isa, Wan Noorshahida Binti Mohd</au><au>Ooi, Shih-Yin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Comparison of heart disease prediction between basics and a Hybrid machine learning (ML) technique</atitle><btitle>AIP conference proceedings</btitle><date>2024-06-27</date><risdate>2024</risdate><volume>3153</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Heart disease is one of the main causes of death worldwide. Machine learning has been discovered tobe useful in creating predictions from massive amounts of data. We’ve also seen machine learning techniques used in recentadvances in a variety of fields such as medical, finance and even retail. In this research, we used a few traditional ML techniques which is K-Nearest Neighbors (K-NN), Support Vector Machine (SVM), Naïve Bayes, Decision Tree, Random Forest, Logistic Regression, and a Hybrid ML technique that combines Random Forest, SVM and K-NN. We achieved a great performance level with 63.33% accuracy rate of using the hybrid ML model in predicting heart disease. Before applying machine learning techniques, we used feature selection including BORUTA and RFE to identify the Top 10 variables from the dataset to compare with non-using feature selection to build an effective predictive model. Other thanthat, several performance metrics are used to evaluate the results.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0218147</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.3153 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0218147
source AIP Journals Complete
subjects Cardiovascular disease
Decision trees
Feature selection
Heart diseases
Machine learning
Performance measurement
Prediction models
Support vector machines
title Comparison of heart disease prediction between basics and a Hybrid machine learning (ML) technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A22%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Comparison%20of%20heart%20disease%20prediction%20between%20basics%20and%20a%20Hybrid%20machine%20learning%20(ML)%20technique&rft.btitle=AIP%20conference%20proceedings&rft.au=Yu,%20Soo%20Jun&rft.date=2024-06-27&rft.volume=3153&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0218147&rft_dat=%3Cproquest_scita%3E3072887146%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072887146&rft_id=info:pmid/&rfr_iscdi=true