Influence of casting-warm pressing process on the thermal conductivity of micro–nano-Al2O3 substrate
Alumina substrates are increasingly used for high-power integrated circuits due to their high thermal conductivity, low thermal expansion coefficient, and excellent insulation properties. However, pores in the green tape from the tape casting process reduce the thermal conductivity and permittivity...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2024-10, Vol.136 (16) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 16 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 136 |
creator | Lyu, Yang Sun, Guoli Ouyang, Xueqiong Liu, Wencai Liu, Qing Shen, Yi Wang, Shuangxi |
description | Alumina substrates are increasingly used for high-power integrated circuits due to their high thermal conductivity, low thermal expansion coefficient, and excellent insulation properties. However, pores in the green tape from the tape casting process reduce the thermal conductivity and permittivity of the sintered ceramic substrate. Researchers have attempted to minimize ceramic porosity with chemical additives or by sintering pure alumina at temperatures above 1650 °C, but these methods often degrade thermal conductivity or quality of substrate evenness. This study proposes a low-cost casting-warm pressing process to densify pure alumina ceramic substrates using micro–nano-mixed alumina powders and sintering at relatively low temperatures. The results indicate that the relative density of the pure alumina ceramic substrate prepared at 1500 °C is 93%, a 4.4% improvement over the tape casting process. Additionally, the thermal conductivity of the alumina substrate from the casting-warm pressing process reaches 15.89 W/(m K), which is 1.4 times higher than that of the tape casting process. Microstructure analysis shows that the casting-warm pressing process with micro- and nano-multi-scale mixed alumina powders forms a novel thermal conduction enhancement mechanism. Large particles in the green tape overlap, while small particles fill the spaces between the large particles. The connected micrometer-sized particle skeletons form high thermal conduction net channels in the substrate, improving the thermal conductivity for heat transfer. |
doi_str_mv | 10.1063/5.0216084 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0216084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123896672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-43523210ded6c77ee55d8c48aaceeb4303864ac345602b3bd24309da4651cd8c3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsL32DAlcLU3CezLMVLodCNrkMmk9GUmaQmGaU738E39ElMadcuDuc_h-9c-AG4RnCGICf3bAYx4lDQEzBBUNRlxRg8BROY26Woq_ocXMS4gRAhQeoJ6Jau60fjtCl8V2gVk3Vv5ZcKQ7ENJsZcZeF1loV3RXo3-wiD6gvtXTvqZD9t2u2HB6uD__3-ccr5ct7jNSni2MQUVDKX4KxTfTRXxzwFr48PL4vncrV-Wi7mq1IjgVNJCcMEI9ialuuqMoaxVmgqlNLGNJRAIjhVmlDGIW5I0-Lcq1tFOUM6k2QKbg57888fo4lJbvwYXD4pCcJE1JxXOFO3Byo_HGMwndwGO6iwkwjKvY2SyaONmb07sFHbpJL17h_4D7Unc0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123896672</pqid></control><display><type>article</type><title>Influence of casting-warm pressing process on the thermal conductivity of micro–nano-Al2O3 substrate</title><source>Alma/SFX Local Collection</source><creator>Lyu, Yang ; Sun, Guoli ; Ouyang, Xueqiong ; Liu, Wencai ; Liu, Qing ; Shen, Yi ; Wang, Shuangxi</creator><creatorcontrib>Lyu, Yang ; Sun, Guoli ; Ouyang, Xueqiong ; Liu, Wencai ; Liu, Qing ; Shen, Yi ; Wang, Shuangxi</creatorcontrib><description>Alumina substrates are increasingly used for high-power integrated circuits due to their high thermal conductivity, low thermal expansion coefficient, and excellent insulation properties. However, pores in the green tape from the tape casting process reduce the thermal conductivity and permittivity of the sintered ceramic substrate. Researchers have attempted to minimize ceramic porosity with chemical additives or by sintering pure alumina at temperatures above 1650 °C, but these methods often degrade thermal conductivity or quality of substrate evenness. This study proposes a low-cost casting-warm pressing process to densify pure alumina ceramic substrates using micro–nano-mixed alumina powders and sintering at relatively low temperatures. The results indicate that the relative density of the pure alumina ceramic substrate prepared at 1500 °C is 93%, a 4.4% improvement over the tape casting process. Additionally, the thermal conductivity of the alumina substrate from the casting-warm pressing process reaches 15.89 W/(m K), which is 1.4 times higher than that of the tape casting process. Microstructure analysis shows that the casting-warm pressing process with micro- and nano-multi-scale mixed alumina powders forms a novel thermal conduction enhancement mechanism. Large particles in the green tape overlap, while small particles fill the spaces between the large particles. The connected micrometer-sized particle skeletons form high thermal conduction net channels in the substrate, improving the thermal conductivity for heat transfer.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0216084</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Alumina ; Aluminum oxide ; Casting ; Ceramics ; Conduction heating ; Heat conductivity ; Heat transfer ; Low temperature ; Porosity ; Power integrated circuits ; Pressing ; Sintering (powder metallurgy) ; Specific gravity ; Tape casting ; Thermal conductivity ; Thermal expansion</subject><ispartof>Journal of applied physics, 2024-10, Vol.136 (16)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-43523210ded6c77ee55d8c48aaceeb4303864ac345602b3bd24309da4651cd8c3</cites><orcidid>0009-0002-3473-761X ; 0000-0002-4270-3324 ; 0009-0001-1865-7129 ; 0009-0007-0210-9009 ; 0009-0009-9974-052X ; 0009-0003-2632-2817 ; 0009-0004-3053-6487</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lyu, Yang</creatorcontrib><creatorcontrib>Sun, Guoli</creatorcontrib><creatorcontrib>Ouyang, Xueqiong</creatorcontrib><creatorcontrib>Liu, Wencai</creatorcontrib><creatorcontrib>Liu, Qing</creatorcontrib><creatorcontrib>Shen, Yi</creatorcontrib><creatorcontrib>Wang, Shuangxi</creatorcontrib><title>Influence of casting-warm pressing process on the thermal conductivity of micro–nano-Al2O3 substrate</title><title>Journal of applied physics</title><description>Alumina substrates are increasingly used for high-power integrated circuits due to their high thermal conductivity, low thermal expansion coefficient, and excellent insulation properties. However, pores in the green tape from the tape casting process reduce the thermal conductivity and permittivity of the sintered ceramic substrate. Researchers have attempted to minimize ceramic porosity with chemical additives or by sintering pure alumina at temperatures above 1650 °C, but these methods often degrade thermal conductivity or quality of substrate evenness. This study proposes a low-cost casting-warm pressing process to densify pure alumina ceramic substrates using micro–nano-mixed alumina powders and sintering at relatively low temperatures. The results indicate that the relative density of the pure alumina ceramic substrate prepared at 1500 °C is 93%, a 4.4% improvement over the tape casting process. Additionally, the thermal conductivity of the alumina substrate from the casting-warm pressing process reaches 15.89 W/(m K), which is 1.4 times higher than that of the tape casting process. Microstructure analysis shows that the casting-warm pressing process with micro- and nano-multi-scale mixed alumina powders forms a novel thermal conduction enhancement mechanism. Large particles in the green tape overlap, while small particles fill the spaces between the large particles. The connected micrometer-sized particle skeletons form high thermal conduction net channels in the substrate, improving the thermal conductivity for heat transfer.</description><subject>Alumina</subject><subject>Aluminum oxide</subject><subject>Casting</subject><subject>Ceramics</subject><subject>Conduction heating</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Low temperature</subject><subject>Porosity</subject><subject>Power integrated circuits</subject><subject>Pressing</subject><subject>Sintering (powder metallurgy)</subject><subject>Specific gravity</subject><subject>Tape casting</subject><subject>Thermal conductivity</subject><subject>Thermal expansion</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsL32DAlcLU3CezLMVLodCNrkMmk9GUmaQmGaU738E39ElMadcuDuc_h-9c-AG4RnCGICf3bAYx4lDQEzBBUNRlxRg8BROY26Woq_ocXMS4gRAhQeoJ6Jau60fjtCl8V2gVk3Vv5ZcKQ7ENJsZcZeF1loV3RXo3-wiD6gvtXTvqZD9t2u2HB6uD__3-ccr5ct7jNSni2MQUVDKX4KxTfTRXxzwFr48PL4vncrV-Wi7mq1IjgVNJCcMEI9ialuuqMoaxVmgqlNLGNJRAIjhVmlDGIW5I0-Lcq1tFOUM6k2QKbg57888fo4lJbvwYXD4pCcJE1JxXOFO3Byo_HGMwndwGO6iwkwjKvY2SyaONmb07sFHbpJL17h_4D7Unc0w</recordid><startdate>20241028</startdate><enddate>20241028</enddate><creator>Lyu, Yang</creator><creator>Sun, Guoli</creator><creator>Ouyang, Xueqiong</creator><creator>Liu, Wencai</creator><creator>Liu, Qing</creator><creator>Shen, Yi</creator><creator>Wang, Shuangxi</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0002-3473-761X</orcidid><orcidid>https://orcid.org/0000-0002-4270-3324</orcidid><orcidid>https://orcid.org/0009-0001-1865-7129</orcidid><orcidid>https://orcid.org/0009-0007-0210-9009</orcidid><orcidid>https://orcid.org/0009-0009-9974-052X</orcidid><orcidid>https://orcid.org/0009-0003-2632-2817</orcidid><orcidid>https://orcid.org/0009-0004-3053-6487</orcidid></search><sort><creationdate>20241028</creationdate><title>Influence of casting-warm pressing process on the thermal conductivity of micro–nano-Al2O3 substrate</title><author>Lyu, Yang ; Sun, Guoli ; Ouyang, Xueqiong ; Liu, Wencai ; Liu, Qing ; Shen, Yi ; Wang, Shuangxi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-43523210ded6c77ee55d8c48aaceeb4303864ac345602b3bd24309da4651cd8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alumina</topic><topic>Aluminum oxide</topic><topic>Casting</topic><topic>Ceramics</topic><topic>Conduction heating</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Low temperature</topic><topic>Porosity</topic><topic>Power integrated circuits</topic><topic>Pressing</topic><topic>Sintering (powder metallurgy)</topic><topic>Specific gravity</topic><topic>Tape casting</topic><topic>Thermal conductivity</topic><topic>Thermal expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyu, Yang</creatorcontrib><creatorcontrib>Sun, Guoli</creatorcontrib><creatorcontrib>Ouyang, Xueqiong</creatorcontrib><creatorcontrib>Liu, Wencai</creatorcontrib><creatorcontrib>Liu, Qing</creatorcontrib><creatorcontrib>Shen, Yi</creatorcontrib><creatorcontrib>Wang, Shuangxi</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyu, Yang</au><au>Sun, Guoli</au><au>Ouyang, Xueqiong</au><au>Liu, Wencai</au><au>Liu, Qing</au><au>Shen, Yi</au><au>Wang, Shuangxi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of casting-warm pressing process on the thermal conductivity of micro–nano-Al2O3 substrate</atitle><jtitle>Journal of applied physics</jtitle><date>2024-10-28</date><risdate>2024</risdate><volume>136</volume><issue>16</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Alumina substrates are increasingly used for high-power integrated circuits due to their high thermal conductivity, low thermal expansion coefficient, and excellent insulation properties. However, pores in the green tape from the tape casting process reduce the thermal conductivity and permittivity of the sintered ceramic substrate. Researchers have attempted to minimize ceramic porosity with chemical additives or by sintering pure alumina at temperatures above 1650 °C, but these methods often degrade thermal conductivity or quality of substrate evenness. This study proposes a low-cost casting-warm pressing process to densify pure alumina ceramic substrates using micro–nano-mixed alumina powders and sintering at relatively low temperatures. The results indicate that the relative density of the pure alumina ceramic substrate prepared at 1500 °C is 93%, a 4.4% improvement over the tape casting process. Additionally, the thermal conductivity of the alumina substrate from the casting-warm pressing process reaches 15.89 W/(m K), which is 1.4 times higher than that of the tape casting process. Microstructure analysis shows that the casting-warm pressing process with micro- and nano-multi-scale mixed alumina powders forms a novel thermal conduction enhancement mechanism. Large particles in the green tape overlap, while small particles fill the spaces between the large particles. The connected micrometer-sized particle skeletons form high thermal conduction net channels in the substrate, improving the thermal conductivity for heat transfer.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0216084</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0002-3473-761X</orcidid><orcidid>https://orcid.org/0000-0002-4270-3324</orcidid><orcidid>https://orcid.org/0009-0001-1865-7129</orcidid><orcidid>https://orcid.org/0009-0007-0210-9009</orcidid><orcidid>https://orcid.org/0009-0009-9974-052X</orcidid><orcidid>https://orcid.org/0009-0003-2632-2817</orcidid><orcidid>https://orcid.org/0009-0004-3053-6487</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2024-10, Vol.136 (16) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0216084 |
source | Alma/SFX Local Collection |
subjects | Alumina Aluminum oxide Casting Ceramics Conduction heating Heat conductivity Heat transfer Low temperature Porosity Power integrated circuits Pressing Sintering (powder metallurgy) Specific gravity Tape casting Thermal conductivity Thermal expansion |
title | Influence of casting-warm pressing process on the thermal conductivity of micro–nano-Al2O3 substrate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T00%3A08%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20casting-warm%20pressing%20process%20on%20the%20thermal%20conductivity%20of%20micro%E2%80%93nano-Al2O3%20substrate&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Lyu,%20Yang&rft.date=2024-10-28&rft.volume=136&rft.issue=16&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0216084&rft_dat=%3Cproquest_scita%3E3123896672%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123896672&rft_id=info:pmid/&rfr_iscdi=true |