Using advanced technologies to process data measured by a PM sensor
Air pollution represents a significant problem for many cities around the world. Particulate matter pollution affects the population’s health and environment. This study aims to use methods of exploratory and predictive data analysis for particulate matter concentrations by applying artificial intel...
Gespeichert in:
Veröffentlicht in: | AIP conference proceedings 2024-05, Vol.3181 (1) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | AIP conference proceedings |
container_volume | 3181 |
creator | Udristioiu, M. T. Dudáš, A. Michalíková, A. Škrinárová, J. Raganová, J. Hruška, M. Pfefferová, M. Spodniaková Raykova, J. Yldizhan, H. Petrisor, I. Buligiu, I. Stoyanova, D. Aksay, B. |
description | Air pollution represents a significant problem for many cities around the world. Particulate matter pollution affects the population’s health and environment. This study aims to use methods of exploratory and predictive data analysis for particulate matter concentrations by applying artificial intelligence techniques to a set of data given by a particulate matter sensor between September 9, 2021, and October 1, 2022. The sensor is placed in Craiova City, Romania, and measures three meteorological parameters (temperature, pressure, relative humidity) and three particulate matter concentrations. This study aims to apply methods like linear and polynomial regression to find correlations between variables. |
doi_str_mv | 10.1063/5.0215439 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0215439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3060860640</sourcerecordid><originalsourceid>FETCH-LOGICAL-p989-9d21069f23eaf301aac54d99ac17df23e848f93edb8db8224517704881a0bc933</originalsourceid><addsrcrecordid>eNotkN1LwzAUxYMoWKcP_gcB34TOm682eZTiF0z0YYJv4TZJZ8fW1KYT9t_bscGFA5cf5xwOIbcM5gwK8aDmwJmSwpyRjCnF8rJgxTnJAIzMuRTfl-QqpTUAN2WpM1J9pbZbUfR_2Lng6RjcTxc3cdWGRMdI-yG6kBL1OCLdBky7YaLqPUX6-U5T6FIcrslFg5sUbk46I8vnp2X1mi8-Xt6qx0XeG21y4_nU0DRcBGwEMESnpDcGHSv94aulbowIvtbTcS4VK0uQWjOE2hkhZuTuaDt1-t2FNNp13A3dlGgFFKALKCRM1P2RSq4dcWxjZ_uh3eKwtwzsYSOr7Gkj8Q8tNVde</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3060860640</pqid></control><display><type>article</type><title>Using advanced technologies to process data measured by a PM sensor</title><source>AIP Journals Complete</source><creator>Udristioiu, M. T. ; Dudáš, A. ; Michalíková, A. ; Škrinárová, J. ; Raganová, J. ; Hruška, M. ; Pfefferová, M. Spodniaková ; Raykova, J. ; Yldizhan, H. ; Petrisor, I. ; Buligiu, I. ; Stoyanova, D. ; Aksay, B.</creator><contributor>Popescu, Alexandra ; Lungu, Mihail ; Rau, Adina</contributor><creatorcontrib>Udristioiu, M. T. ; Dudáš, A. ; Michalíková, A. ; Škrinárová, J. ; Raganová, J. ; Hruška, M. ; Pfefferová, M. Spodniaková ; Raykova, J. ; Yldizhan, H. ; Petrisor, I. ; Buligiu, I. ; Stoyanova, D. ; Aksay, B. ; Popescu, Alexandra ; Lungu, Mihail ; Rau, Adina</creatorcontrib><description>Air pollution represents a significant problem for many cities around the world. Particulate matter pollution affects the population’s health and environment. This study aims to use methods of exploratory and predictive data analysis for particulate matter concentrations by applying artificial intelligence techniques to a set of data given by a particulate matter sensor between September 9, 2021, and October 1, 2022. The sensor is placed in Craiova City, Romania, and measures three meteorological parameters (temperature, pressure, relative humidity) and three particulate matter concentrations. This study aims to apply methods like linear and polynomial regression to find correlations between variables.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0215439</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Artificial intelligence ; Cities ; Data analysis ; Meteorological parameters ; Particulate emissions ; Polynomials ; Relative humidity</subject><ispartof>AIP conference proceedings, 2024-05, Vol.3181 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0215439$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76126</link.rule.ids></links><search><contributor>Popescu, Alexandra</contributor><contributor>Lungu, Mihail</contributor><contributor>Rau, Adina</contributor><creatorcontrib>Udristioiu, M. T.</creatorcontrib><creatorcontrib>Dudáš, A.</creatorcontrib><creatorcontrib>Michalíková, A.</creatorcontrib><creatorcontrib>Škrinárová, J.</creatorcontrib><creatorcontrib>Raganová, J.</creatorcontrib><creatorcontrib>Hruška, M.</creatorcontrib><creatorcontrib>Pfefferová, M. Spodniaková</creatorcontrib><creatorcontrib>Raykova, J.</creatorcontrib><creatorcontrib>Yldizhan, H.</creatorcontrib><creatorcontrib>Petrisor, I.</creatorcontrib><creatorcontrib>Buligiu, I.</creatorcontrib><creatorcontrib>Stoyanova, D.</creatorcontrib><creatorcontrib>Aksay, B.</creatorcontrib><title>Using advanced technologies to process data measured by a PM sensor</title><title>AIP conference proceedings</title><description>Air pollution represents a significant problem for many cities around the world. Particulate matter pollution affects the population’s health and environment. This study aims to use methods of exploratory and predictive data analysis for particulate matter concentrations by applying artificial intelligence techniques to a set of data given by a particulate matter sensor between September 9, 2021, and October 1, 2022. The sensor is placed in Craiova City, Romania, and measures three meteorological parameters (temperature, pressure, relative humidity) and three particulate matter concentrations. This study aims to apply methods like linear and polynomial regression to find correlations between variables.</description><subject>Artificial intelligence</subject><subject>Cities</subject><subject>Data analysis</subject><subject>Meteorological parameters</subject><subject>Particulate emissions</subject><subject>Polynomials</subject><subject>Relative humidity</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkN1LwzAUxYMoWKcP_gcB34TOm682eZTiF0z0YYJv4TZJZ8fW1KYT9t_bscGFA5cf5xwOIbcM5gwK8aDmwJmSwpyRjCnF8rJgxTnJAIzMuRTfl-QqpTUAN2WpM1J9pbZbUfR_2Lng6RjcTxc3cdWGRMdI-yG6kBL1OCLdBky7YaLqPUX6-U5T6FIcrslFg5sUbk46I8vnp2X1mi8-Xt6qx0XeG21y4_nU0DRcBGwEMESnpDcGHSv94aulbowIvtbTcS4VK0uQWjOE2hkhZuTuaDt1-t2FNNp13A3dlGgFFKALKCRM1P2RSq4dcWxjZ_uh3eKwtwzsYSOr7Gkj8Q8tNVde</recordid><startdate>20240528</startdate><enddate>20240528</enddate><creator>Udristioiu, M. T.</creator><creator>Dudáš, A.</creator><creator>Michalíková, A.</creator><creator>Škrinárová, J.</creator><creator>Raganová, J.</creator><creator>Hruška, M.</creator><creator>Pfefferová, M. Spodniaková</creator><creator>Raykova, J.</creator><creator>Yldizhan, H.</creator><creator>Petrisor, I.</creator><creator>Buligiu, I.</creator><creator>Stoyanova, D.</creator><creator>Aksay, B.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240528</creationdate><title>Using advanced technologies to process data measured by a PM sensor</title><author>Udristioiu, M. T. ; Dudáš, A. ; Michalíková, A. ; Škrinárová, J. ; Raganová, J. ; Hruška, M. ; Pfefferová, M. Spodniaková ; Raykova, J. ; Yldizhan, H. ; Petrisor, I. ; Buligiu, I. ; Stoyanova, D. ; Aksay, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p989-9d21069f23eaf301aac54d99ac17df23e848f93edb8db8224517704881a0bc933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Cities</topic><topic>Data analysis</topic><topic>Meteorological parameters</topic><topic>Particulate emissions</topic><topic>Polynomials</topic><topic>Relative humidity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Udristioiu, M. T.</creatorcontrib><creatorcontrib>Dudáš, A.</creatorcontrib><creatorcontrib>Michalíková, A.</creatorcontrib><creatorcontrib>Škrinárová, J.</creatorcontrib><creatorcontrib>Raganová, J.</creatorcontrib><creatorcontrib>Hruška, M.</creatorcontrib><creatorcontrib>Pfefferová, M. Spodniaková</creatorcontrib><creatorcontrib>Raykova, J.</creatorcontrib><creatorcontrib>Yldizhan, H.</creatorcontrib><creatorcontrib>Petrisor, I.</creatorcontrib><creatorcontrib>Buligiu, I.</creatorcontrib><creatorcontrib>Stoyanova, D.</creatorcontrib><creatorcontrib>Aksay, B.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIP conference proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Udristioiu, M. T.</au><au>Dudáš, A.</au><au>Michalíková, A.</au><au>Škrinárová, J.</au><au>Raganová, J.</au><au>Hruška, M.</au><au>Pfefferová, M. Spodniaková</au><au>Raykova, J.</au><au>Yldizhan, H.</au><au>Petrisor, I.</au><au>Buligiu, I.</au><au>Stoyanova, D.</au><au>Aksay, B.</au><au>Popescu, Alexandra</au><au>Lungu, Mihail</au><au>Rau, Adina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using advanced technologies to process data measured by a PM sensor</atitle><jtitle>AIP conference proceedings</jtitle><date>2024-05-28</date><risdate>2024</risdate><volume>3181</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Air pollution represents a significant problem for many cities around the world. Particulate matter pollution affects the population’s health and environment. This study aims to use methods of exploratory and predictive data analysis for particulate matter concentrations by applying artificial intelligence techniques to a set of data given by a particulate matter sensor between September 9, 2021, and October 1, 2022. The sensor is placed in Craiova City, Romania, and measures three meteorological parameters (temperature, pressure, relative humidity) and three particulate matter concentrations. This study aims to apply methods like linear and polynomial regression to find correlations between variables.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0215439</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2024-05, Vol.3181 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0215439 |
source | AIP Journals Complete |
subjects | Artificial intelligence Cities Data analysis Meteorological parameters Particulate emissions Polynomials Relative humidity |
title | Using advanced technologies to process data measured by a PM sensor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A17%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20advanced%20technologies%20to%20process%20data%20measured%20by%20a%20PM%20sensor&rft.jtitle=AIP%20conference%20proceedings&rft.au=Udristioiu,%20M.%20T.&rft.date=2024-05-28&rft.volume=3181&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0215439&rft_dat=%3Cproquest_scita%3E3060860640%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3060860640&rft_id=info:pmid/&rfr_iscdi=true |