Using advanced technologies to process data measured by a PM sensor

Air pollution represents a significant problem for many cities around the world. Particulate matter pollution affects the population’s health and environment. This study aims to use methods of exploratory and predictive data analysis for particulate matter concentrations by applying artificial intel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP conference proceedings 2024-05, Vol.3181 (1)
Hauptverfasser: Udristioiu, M. T., Dudáš, A., Michalíková, A., Škrinárová, J., Raganová, J., Hruška, M., Pfefferová, M. Spodniaková, Raykova, J., Yldizhan, H., Petrisor, I., Buligiu, I., Stoyanova, D., Aksay, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title AIP conference proceedings
container_volume 3181
creator Udristioiu, M. T.
Dudáš, A.
Michalíková, A.
Škrinárová, J.
Raganová, J.
Hruška, M.
Pfefferová, M. Spodniaková
Raykova, J.
Yldizhan, H.
Petrisor, I.
Buligiu, I.
Stoyanova, D.
Aksay, B.
description Air pollution represents a significant problem for many cities around the world. Particulate matter pollution affects the population’s health and environment. This study aims to use methods of exploratory and predictive data analysis for particulate matter concentrations by applying artificial intelligence techniques to a set of data given by a particulate matter sensor between September 9, 2021, and October 1, 2022. The sensor is placed in Craiova City, Romania, and measures three meteorological parameters (temperature, pressure, relative humidity) and three particulate matter concentrations. This study aims to apply methods like linear and polynomial regression to find correlations between variables.
doi_str_mv 10.1063/5.0215439
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0215439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3060860640</sourcerecordid><originalsourceid>FETCH-LOGICAL-p989-9d21069f23eaf301aac54d99ac17df23e848f93edb8db8224517704881a0bc933</originalsourceid><addsrcrecordid>eNotkN1LwzAUxYMoWKcP_gcB34TOm682eZTiF0z0YYJv4TZJZ8fW1KYT9t_bscGFA5cf5xwOIbcM5gwK8aDmwJmSwpyRjCnF8rJgxTnJAIzMuRTfl-QqpTUAN2WpM1J9pbZbUfR_2Lng6RjcTxc3cdWGRMdI-yG6kBL1OCLdBky7YaLqPUX6-U5T6FIcrslFg5sUbk46I8vnp2X1mi8-Xt6qx0XeG21y4_nU0DRcBGwEMESnpDcGHSv94aulbowIvtbTcS4VK0uQWjOE2hkhZuTuaDt1-t2FNNp13A3dlGgFFKALKCRM1P2RSq4dcWxjZ_uh3eKwtwzsYSOr7Gkj8Q8tNVde</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3060860640</pqid></control><display><type>article</type><title>Using advanced technologies to process data measured by a PM sensor</title><source>AIP Journals Complete</source><creator>Udristioiu, M. T. ; Dudáš, A. ; Michalíková, A. ; Škrinárová, J. ; Raganová, J. ; Hruška, M. ; Pfefferová, M. Spodniaková ; Raykova, J. ; Yldizhan, H. ; Petrisor, I. ; Buligiu, I. ; Stoyanova, D. ; Aksay, B.</creator><contributor>Popescu, Alexandra ; Lungu, Mihail ; Rau, Adina</contributor><creatorcontrib>Udristioiu, M. T. ; Dudáš, A. ; Michalíková, A. ; Škrinárová, J. ; Raganová, J. ; Hruška, M. ; Pfefferová, M. Spodniaková ; Raykova, J. ; Yldizhan, H. ; Petrisor, I. ; Buligiu, I. ; Stoyanova, D. ; Aksay, B. ; Popescu, Alexandra ; Lungu, Mihail ; Rau, Adina</creatorcontrib><description>Air pollution represents a significant problem for many cities around the world. Particulate matter pollution affects the population’s health and environment. This study aims to use methods of exploratory and predictive data analysis for particulate matter concentrations by applying artificial intelligence techniques to a set of data given by a particulate matter sensor between September 9, 2021, and October 1, 2022. The sensor is placed in Craiova City, Romania, and measures three meteorological parameters (temperature, pressure, relative humidity) and three particulate matter concentrations. This study aims to apply methods like linear and polynomial regression to find correlations between variables.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0215439</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Artificial intelligence ; Cities ; Data analysis ; Meteorological parameters ; Particulate emissions ; Polynomials ; Relative humidity</subject><ispartof>AIP conference proceedings, 2024-05, Vol.3181 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0215439$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76126</link.rule.ids></links><search><contributor>Popescu, Alexandra</contributor><contributor>Lungu, Mihail</contributor><contributor>Rau, Adina</contributor><creatorcontrib>Udristioiu, M. T.</creatorcontrib><creatorcontrib>Dudáš, A.</creatorcontrib><creatorcontrib>Michalíková, A.</creatorcontrib><creatorcontrib>Škrinárová, J.</creatorcontrib><creatorcontrib>Raganová, J.</creatorcontrib><creatorcontrib>Hruška, M.</creatorcontrib><creatorcontrib>Pfefferová, M. Spodniaková</creatorcontrib><creatorcontrib>Raykova, J.</creatorcontrib><creatorcontrib>Yldizhan, H.</creatorcontrib><creatorcontrib>Petrisor, I.</creatorcontrib><creatorcontrib>Buligiu, I.</creatorcontrib><creatorcontrib>Stoyanova, D.</creatorcontrib><creatorcontrib>Aksay, B.</creatorcontrib><title>Using advanced technologies to process data measured by a PM sensor</title><title>AIP conference proceedings</title><description>Air pollution represents a significant problem for many cities around the world. Particulate matter pollution affects the population’s health and environment. This study aims to use methods of exploratory and predictive data analysis for particulate matter concentrations by applying artificial intelligence techniques to a set of data given by a particulate matter sensor between September 9, 2021, and October 1, 2022. The sensor is placed in Craiova City, Romania, and measures three meteorological parameters (temperature, pressure, relative humidity) and three particulate matter concentrations. This study aims to apply methods like linear and polynomial regression to find correlations between variables.</description><subject>Artificial intelligence</subject><subject>Cities</subject><subject>Data analysis</subject><subject>Meteorological parameters</subject><subject>Particulate emissions</subject><subject>Polynomials</subject><subject>Relative humidity</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkN1LwzAUxYMoWKcP_gcB34TOm682eZTiF0z0YYJv4TZJZ8fW1KYT9t_bscGFA5cf5xwOIbcM5gwK8aDmwJmSwpyRjCnF8rJgxTnJAIzMuRTfl-QqpTUAN2WpM1J9pbZbUfR_2Lng6RjcTxc3cdWGRMdI-yG6kBL1OCLdBky7YaLqPUX6-U5T6FIcrslFg5sUbk46I8vnp2X1mi8-Xt6qx0XeG21y4_nU0DRcBGwEMESnpDcGHSv94aulbowIvtbTcS4VK0uQWjOE2hkhZuTuaDt1-t2FNNp13A3dlGgFFKALKCRM1P2RSq4dcWxjZ_uh3eKwtwzsYSOr7Gkj8Q8tNVde</recordid><startdate>20240528</startdate><enddate>20240528</enddate><creator>Udristioiu, M. T.</creator><creator>Dudáš, A.</creator><creator>Michalíková, A.</creator><creator>Škrinárová, J.</creator><creator>Raganová, J.</creator><creator>Hruška, M.</creator><creator>Pfefferová, M. Spodniaková</creator><creator>Raykova, J.</creator><creator>Yldizhan, H.</creator><creator>Petrisor, I.</creator><creator>Buligiu, I.</creator><creator>Stoyanova, D.</creator><creator>Aksay, B.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240528</creationdate><title>Using advanced technologies to process data measured by a PM sensor</title><author>Udristioiu, M. T. ; Dudáš, A. ; Michalíková, A. ; Škrinárová, J. ; Raganová, J. ; Hruška, M. ; Pfefferová, M. Spodniaková ; Raykova, J. ; Yldizhan, H. ; Petrisor, I. ; Buligiu, I. ; Stoyanova, D. ; Aksay, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p989-9d21069f23eaf301aac54d99ac17df23e848f93edb8db8224517704881a0bc933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Cities</topic><topic>Data analysis</topic><topic>Meteorological parameters</topic><topic>Particulate emissions</topic><topic>Polynomials</topic><topic>Relative humidity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Udristioiu, M. T.</creatorcontrib><creatorcontrib>Dudáš, A.</creatorcontrib><creatorcontrib>Michalíková, A.</creatorcontrib><creatorcontrib>Škrinárová, J.</creatorcontrib><creatorcontrib>Raganová, J.</creatorcontrib><creatorcontrib>Hruška, M.</creatorcontrib><creatorcontrib>Pfefferová, M. Spodniaková</creatorcontrib><creatorcontrib>Raykova, J.</creatorcontrib><creatorcontrib>Yldizhan, H.</creatorcontrib><creatorcontrib>Petrisor, I.</creatorcontrib><creatorcontrib>Buligiu, I.</creatorcontrib><creatorcontrib>Stoyanova, D.</creatorcontrib><creatorcontrib>Aksay, B.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIP conference proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Udristioiu, M. T.</au><au>Dudáš, A.</au><au>Michalíková, A.</au><au>Škrinárová, J.</au><au>Raganová, J.</au><au>Hruška, M.</au><au>Pfefferová, M. Spodniaková</au><au>Raykova, J.</au><au>Yldizhan, H.</au><au>Petrisor, I.</au><au>Buligiu, I.</au><au>Stoyanova, D.</au><au>Aksay, B.</au><au>Popescu, Alexandra</au><au>Lungu, Mihail</au><au>Rau, Adina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using advanced technologies to process data measured by a PM sensor</atitle><jtitle>AIP conference proceedings</jtitle><date>2024-05-28</date><risdate>2024</risdate><volume>3181</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Air pollution represents a significant problem for many cities around the world. Particulate matter pollution affects the population’s health and environment. This study aims to use methods of exploratory and predictive data analysis for particulate matter concentrations by applying artificial intelligence techniques to a set of data given by a particulate matter sensor between September 9, 2021, and October 1, 2022. The sensor is placed in Craiova City, Romania, and measures three meteorological parameters (temperature, pressure, relative humidity) and three particulate matter concentrations. This study aims to apply methods like linear and polynomial regression to find correlations between variables.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0215439</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024-05, Vol.3181 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0215439
source AIP Journals Complete
subjects Artificial intelligence
Cities
Data analysis
Meteorological parameters
Particulate emissions
Polynomials
Relative humidity
title Using advanced technologies to process data measured by a PM sensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A17%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20advanced%20technologies%20to%20process%20data%20measured%20by%20a%20PM%20sensor&rft.jtitle=AIP%20conference%20proceedings&rft.au=Udristioiu,%20M.%20T.&rft.date=2024-05-28&rft.volume=3181&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0215439&rft_dat=%3Cproquest_scita%3E3060860640%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3060860640&rft_id=info:pmid/&rfr_iscdi=true