Dynamic evolution of oxygen vacancies during cycling in antiferroelectric HfxZr1−xO2

Antiferroelectric (AFE) ZrO2-based devices are anticipated to exhibit superior endurance properties in comparison to their ferroelectric (FE) counterparts. Nevertheless, the underlying mechanisms of AFE devices remain elusive. In this study, guided by the dynamic evolution of oxygen vacancies (Vo),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2024-06, Vol.124 (24)
Hauptverfasser: Qian, Haoji, Shen, Rongzong, Zhang, Hongrui, Xu, Jiacheng, Lin, Gaobo, Ding, Yian, Gu, Jiani, Yu, Xiao, Liu, Yan, Jin, Chengji, Chen, Jiajia, Han, Genquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page
container_title Applied physics letters
container_volume 124
creator Qian, Haoji
Shen, Rongzong
Zhang, Hongrui
Xu, Jiacheng
Lin, Gaobo
Ding, Yian
Gu, Jiani
Yu, Xiao
Liu, Yan
Jin, Chengji
Chen, Jiajia
Han, Genquan
description Antiferroelectric (AFE) ZrO2-based devices are anticipated to exhibit superior endurance properties in comparison to their ferroelectric (FE) counterparts. Nevertheless, the underlying mechanisms of AFE devices remain elusive. In this study, guided by the dynamic evolution of oxygen vacancies (Vo), we reveal three kinds of fatigue in AFE HfxZr1−xO2 (HZO) during uni-directional cycling. The first mechanism is related to the interfacial Vo charge trapping, which accelerates the switching from the P↓↑ state to the P↓↓ state, leading to extrinsic fatigue, and is demonstrated by electrical stress measurements. The other two mechanisms are Vo-related AFE to FE phase transition (PT) and Vo localization inside the HZO films, which are supported by the first-principles calculations. The highest polarization switching barrier occurs when Vo is localized at the tetra-coordinated oxygen sites inside HZO films. This means that tetra-coordinated Vo accumulation leads to less polarization switching, resulting in AFE to FE PT and Vo localization induced fatigue, i.e., intrinsic fatigue. This work reveals the dynamic evolution of Vo during cycling and its impact on AFE properties, paving the way for developing more durable AFE ZrO2-based devices and contributing to the emergence of diverse recovery methods in the future.
doi_str_mv 10.1063/5.0214584
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0214584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3068197055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-59959b4f8f47e17ebc11c2f41609ca487c6d597c327577904662cd6091ad29b3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsL32DAlcLU3GQymSyl_lQodFNcuBnSTFJSpklNZsrMG7j2EX0Sp7RrV4fD_TgXPoRuAU8A5_SRTTCBjBXZGRoB5jylAMU5GmGMaZoLBpfoKsbNUBmhdIQ-nnsnt1Yleu_rtrHeJd4kvuvX2iV7qaRTVsekaoN160T1qj6kdYl0jTU6BK9rrZowLMxM9xng9_unW5BrdGFkHfXNKcdo-fqynM7S-eLtffo0TxVhpEmZEEysMlOYjGvgeqUAFDEZ5FgomRVc5RUTXFHCGecCZ3lOVDUcQVZErOgY3R1nd8F_tTo25ca3wQ0fS4rzAgTHjA3U_ZFSwccYtCl3wW5l6EvA5cFaycqTtYF9OLJR2UYefPwD_wGSwmxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068197055</pqid></control><display><type>article</type><title>Dynamic evolution of oxygen vacancies during cycling in antiferroelectric HfxZr1−xO2</title><source>AIP Journals Complete</source><creator>Qian, Haoji ; Shen, Rongzong ; Zhang, Hongrui ; Xu, Jiacheng ; Lin, Gaobo ; Ding, Yian ; Gu, Jiani ; Yu, Xiao ; Liu, Yan ; Jin, Chengji ; Chen, Jiajia ; Han, Genquan</creator><creatorcontrib>Qian, Haoji ; Shen, Rongzong ; Zhang, Hongrui ; Xu, Jiacheng ; Lin, Gaobo ; Ding, Yian ; Gu, Jiani ; Yu, Xiao ; Liu, Yan ; Jin, Chengji ; Chen, Jiajia ; Han, Genquan</creatorcontrib><description>Antiferroelectric (AFE) ZrO2-based devices are anticipated to exhibit superior endurance properties in comparison to their ferroelectric (FE) counterparts. Nevertheless, the underlying mechanisms of AFE devices remain elusive. In this study, guided by the dynamic evolution of oxygen vacancies (Vo), we reveal three kinds of fatigue in AFE HfxZr1−xO2 (HZO) during uni-directional cycling. The first mechanism is related to the interfacial Vo charge trapping, which accelerates the switching from the P↓↑ state to the P↓↓ state, leading to extrinsic fatigue, and is demonstrated by electrical stress measurements. The other two mechanisms are Vo-related AFE to FE phase transition (PT) and Vo localization inside the HZO films, which are supported by the first-principles calculations. The highest polarization switching barrier occurs when Vo is localized at the tetra-coordinated oxygen sites inside HZO films. This means that tetra-coordinated Vo accumulation leads to less polarization switching, resulting in AFE to FE PT and Vo localization induced fatigue, i.e., intrinsic fatigue. This work reveals the dynamic evolution of Vo during cycling and its impact on AFE properties, paving the way for developing more durable AFE ZrO2-based devices and contributing to the emergence of diverse recovery methods in the future.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0214584</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Antiferroelectricity ; Cycles ; Evolution ; First principles ; Localization ; Oxygen ; Phase transitions ; Polarization ; Switching ; Zirconium dioxide</subject><ispartof>Applied physics letters, 2024-06, Vol.124 (24)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-59959b4f8f47e17ebc11c2f41609ca487c6d597c327577904662cd6091ad29b3</cites><orcidid>0000-0002-7573-176X ; 0009-0001-2734-6920 ; 0000-0002-5876-9897 ; 0000-0002-8517-459X ; 0000-0001-8769-521X ; 0000-0003-4753-0634</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0214584$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27903,27904,76130</link.rule.ids></links><search><creatorcontrib>Qian, Haoji</creatorcontrib><creatorcontrib>Shen, Rongzong</creatorcontrib><creatorcontrib>Zhang, Hongrui</creatorcontrib><creatorcontrib>Xu, Jiacheng</creatorcontrib><creatorcontrib>Lin, Gaobo</creatorcontrib><creatorcontrib>Ding, Yian</creatorcontrib><creatorcontrib>Gu, Jiani</creatorcontrib><creatorcontrib>Yu, Xiao</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Jin, Chengji</creatorcontrib><creatorcontrib>Chen, Jiajia</creatorcontrib><creatorcontrib>Han, Genquan</creatorcontrib><title>Dynamic evolution of oxygen vacancies during cycling in antiferroelectric HfxZr1−xO2</title><title>Applied physics letters</title><description>Antiferroelectric (AFE) ZrO2-based devices are anticipated to exhibit superior endurance properties in comparison to their ferroelectric (FE) counterparts. Nevertheless, the underlying mechanisms of AFE devices remain elusive. In this study, guided by the dynamic evolution of oxygen vacancies (Vo), we reveal three kinds of fatigue in AFE HfxZr1−xO2 (HZO) during uni-directional cycling. The first mechanism is related to the interfacial Vo charge trapping, which accelerates the switching from the P↓↑ state to the P↓↓ state, leading to extrinsic fatigue, and is demonstrated by electrical stress measurements. The other two mechanisms are Vo-related AFE to FE phase transition (PT) and Vo localization inside the HZO films, which are supported by the first-principles calculations. The highest polarization switching barrier occurs when Vo is localized at the tetra-coordinated oxygen sites inside HZO films. This means that tetra-coordinated Vo accumulation leads to less polarization switching, resulting in AFE to FE PT and Vo localization induced fatigue, i.e., intrinsic fatigue. This work reveals the dynamic evolution of Vo during cycling and its impact on AFE properties, paving the way for developing more durable AFE ZrO2-based devices and contributing to the emergence of diverse recovery methods in the future.</description><subject>Antiferroelectricity</subject><subject>Cycles</subject><subject>Evolution</subject><subject>First principles</subject><subject>Localization</subject><subject>Oxygen</subject><subject>Phase transitions</subject><subject>Polarization</subject><subject>Switching</subject><subject>Zirconium dioxide</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsL32DAlcLU3GQymSyl_lQodFNcuBnSTFJSpklNZsrMG7j2EX0Sp7RrV4fD_TgXPoRuAU8A5_SRTTCBjBXZGRoB5jylAMU5GmGMaZoLBpfoKsbNUBmhdIQ-nnsnt1Yleu_rtrHeJd4kvuvX2iV7qaRTVsekaoN160T1qj6kdYl0jTU6BK9rrZowLMxM9xng9_unW5BrdGFkHfXNKcdo-fqynM7S-eLtffo0TxVhpEmZEEysMlOYjGvgeqUAFDEZ5FgomRVc5RUTXFHCGecCZ3lOVDUcQVZErOgY3R1nd8F_tTo25ca3wQ0fS4rzAgTHjA3U_ZFSwccYtCl3wW5l6EvA5cFaycqTtYF9OLJR2UYefPwD_wGSwmxg</recordid><startdate>20240610</startdate><enddate>20240610</enddate><creator>Qian, Haoji</creator><creator>Shen, Rongzong</creator><creator>Zhang, Hongrui</creator><creator>Xu, Jiacheng</creator><creator>Lin, Gaobo</creator><creator>Ding, Yian</creator><creator>Gu, Jiani</creator><creator>Yu, Xiao</creator><creator>Liu, Yan</creator><creator>Jin, Chengji</creator><creator>Chen, Jiajia</creator><creator>Han, Genquan</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7573-176X</orcidid><orcidid>https://orcid.org/0009-0001-2734-6920</orcidid><orcidid>https://orcid.org/0000-0002-5876-9897</orcidid><orcidid>https://orcid.org/0000-0002-8517-459X</orcidid><orcidid>https://orcid.org/0000-0001-8769-521X</orcidid><orcidid>https://orcid.org/0000-0003-4753-0634</orcidid></search><sort><creationdate>20240610</creationdate><title>Dynamic evolution of oxygen vacancies during cycling in antiferroelectric HfxZr1−xO2</title><author>Qian, Haoji ; Shen, Rongzong ; Zhang, Hongrui ; Xu, Jiacheng ; Lin, Gaobo ; Ding, Yian ; Gu, Jiani ; Yu, Xiao ; Liu, Yan ; Jin, Chengji ; Chen, Jiajia ; Han, Genquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-59959b4f8f47e17ebc11c2f41609ca487c6d597c327577904662cd6091ad29b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antiferroelectricity</topic><topic>Cycles</topic><topic>Evolution</topic><topic>First principles</topic><topic>Localization</topic><topic>Oxygen</topic><topic>Phase transitions</topic><topic>Polarization</topic><topic>Switching</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, Haoji</creatorcontrib><creatorcontrib>Shen, Rongzong</creatorcontrib><creatorcontrib>Zhang, Hongrui</creatorcontrib><creatorcontrib>Xu, Jiacheng</creatorcontrib><creatorcontrib>Lin, Gaobo</creatorcontrib><creatorcontrib>Ding, Yian</creatorcontrib><creatorcontrib>Gu, Jiani</creatorcontrib><creatorcontrib>Yu, Xiao</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Jin, Chengji</creatorcontrib><creatorcontrib>Chen, Jiajia</creatorcontrib><creatorcontrib>Han, Genquan</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qian, Haoji</au><au>Shen, Rongzong</au><au>Zhang, Hongrui</au><au>Xu, Jiacheng</au><au>Lin, Gaobo</au><au>Ding, Yian</au><au>Gu, Jiani</au><au>Yu, Xiao</au><au>Liu, Yan</au><au>Jin, Chengji</au><au>Chen, Jiajia</au><au>Han, Genquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic evolution of oxygen vacancies during cycling in antiferroelectric HfxZr1−xO2</atitle><jtitle>Applied physics letters</jtitle><date>2024-06-10</date><risdate>2024</risdate><volume>124</volume><issue>24</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Antiferroelectric (AFE) ZrO2-based devices are anticipated to exhibit superior endurance properties in comparison to their ferroelectric (FE) counterparts. Nevertheless, the underlying mechanisms of AFE devices remain elusive. In this study, guided by the dynamic evolution of oxygen vacancies (Vo), we reveal three kinds of fatigue in AFE HfxZr1−xO2 (HZO) during uni-directional cycling. The first mechanism is related to the interfacial Vo charge trapping, which accelerates the switching from the P↓↑ state to the P↓↓ state, leading to extrinsic fatigue, and is demonstrated by electrical stress measurements. The other two mechanisms are Vo-related AFE to FE phase transition (PT) and Vo localization inside the HZO films, which are supported by the first-principles calculations. The highest polarization switching barrier occurs when Vo is localized at the tetra-coordinated oxygen sites inside HZO films. This means that tetra-coordinated Vo accumulation leads to less polarization switching, resulting in AFE to FE PT and Vo localization induced fatigue, i.e., intrinsic fatigue. This work reveals the dynamic evolution of Vo during cycling and its impact on AFE properties, paving the way for developing more durable AFE ZrO2-based devices and contributing to the emergence of diverse recovery methods in the future.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0214584</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7573-176X</orcidid><orcidid>https://orcid.org/0009-0001-2734-6920</orcidid><orcidid>https://orcid.org/0000-0002-5876-9897</orcidid><orcidid>https://orcid.org/0000-0002-8517-459X</orcidid><orcidid>https://orcid.org/0000-0001-8769-521X</orcidid><orcidid>https://orcid.org/0000-0003-4753-0634</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2024-06, Vol.124 (24)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_5_0214584
source AIP Journals Complete
subjects Antiferroelectricity
Cycles
Evolution
First principles
Localization
Oxygen
Phase transitions
Polarization
Switching
Zirconium dioxide
title Dynamic evolution of oxygen vacancies during cycling in antiferroelectric HfxZr1−xO2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A00%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20evolution%20of%20oxygen%20vacancies%20during%20cycling%20in%20antiferroelectric%20HfxZr1%E2%88%92xO2&rft.jtitle=Applied%20physics%20letters&rft.au=Qian,%20Haoji&rft.date=2024-06-10&rft.volume=124&rft.issue=24&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0214584&rft_dat=%3Cproquest_scita%3E3068197055%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3068197055&rft_id=info:pmid/&rfr_iscdi=true