Dynamic evolution of oxygen vacancies during cycling in antiferroelectric HfxZr1−xO2
Antiferroelectric (AFE) ZrO2-based devices are anticipated to exhibit superior endurance properties in comparison to their ferroelectric (FE) counterparts. Nevertheless, the underlying mechanisms of AFE devices remain elusive. In this study, guided by the dynamic evolution of oxygen vacancies (Vo),...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2024-06, Vol.124 (24) |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 124 |
creator | Qian, Haoji Shen, Rongzong Zhang, Hongrui Xu, Jiacheng Lin, Gaobo Ding, Yian Gu, Jiani Yu, Xiao Liu, Yan Jin, Chengji Chen, Jiajia Han, Genquan |
description | Antiferroelectric (AFE) ZrO2-based devices are anticipated to exhibit superior endurance properties in comparison to their ferroelectric (FE) counterparts. Nevertheless, the underlying mechanisms of AFE devices remain elusive. In this study, guided by the dynamic evolution of oxygen vacancies (Vo), we reveal three kinds of fatigue in AFE HfxZr1−xO2 (HZO) during uni-directional cycling. The first mechanism is related to the interfacial Vo charge trapping, which accelerates the switching from the P↓↑ state to the P↓↓ state, leading to extrinsic fatigue, and is demonstrated by electrical stress measurements. The other two mechanisms are Vo-related AFE to FE phase transition (PT) and Vo localization inside the HZO films, which are supported by the first-principles calculations. The highest polarization switching barrier occurs when Vo is localized at the tetra-coordinated oxygen sites inside HZO films. This means that tetra-coordinated Vo accumulation leads to less polarization switching, resulting in AFE to FE PT and Vo localization induced fatigue, i.e., intrinsic fatigue. This work reveals the dynamic evolution of Vo during cycling and its impact on AFE properties, paving the way for developing more durable AFE ZrO2-based devices and contributing to the emergence of diverse recovery methods in the future. |
doi_str_mv | 10.1063/5.0214584 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0214584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3068197055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-59959b4f8f47e17ebc11c2f41609ca487c6d597c327577904662cd6091ad29b3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsL32DAlcLU3GQymSyl_lQodFNcuBnSTFJSpklNZsrMG7j2EX0Sp7RrV4fD_TgXPoRuAU8A5_SRTTCBjBXZGRoB5jylAMU5GmGMaZoLBpfoKsbNUBmhdIQ-nnsnt1Yleu_rtrHeJd4kvuvX2iV7qaRTVsekaoN160T1qj6kdYl0jTU6BK9rrZowLMxM9xng9_unW5BrdGFkHfXNKcdo-fqynM7S-eLtffo0TxVhpEmZEEysMlOYjGvgeqUAFDEZ5FgomRVc5RUTXFHCGecCZ3lOVDUcQVZErOgY3R1nd8F_tTo25ca3wQ0fS4rzAgTHjA3U_ZFSwccYtCl3wW5l6EvA5cFaycqTtYF9OLJR2UYefPwD_wGSwmxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068197055</pqid></control><display><type>article</type><title>Dynamic evolution of oxygen vacancies during cycling in antiferroelectric HfxZr1−xO2</title><source>AIP Journals Complete</source><creator>Qian, Haoji ; Shen, Rongzong ; Zhang, Hongrui ; Xu, Jiacheng ; Lin, Gaobo ; Ding, Yian ; Gu, Jiani ; Yu, Xiao ; Liu, Yan ; Jin, Chengji ; Chen, Jiajia ; Han, Genquan</creator><creatorcontrib>Qian, Haoji ; Shen, Rongzong ; Zhang, Hongrui ; Xu, Jiacheng ; Lin, Gaobo ; Ding, Yian ; Gu, Jiani ; Yu, Xiao ; Liu, Yan ; Jin, Chengji ; Chen, Jiajia ; Han, Genquan</creatorcontrib><description>Antiferroelectric (AFE) ZrO2-based devices are anticipated to exhibit superior endurance properties in comparison to their ferroelectric (FE) counterparts. Nevertheless, the underlying mechanisms of AFE devices remain elusive. In this study, guided by the dynamic evolution of oxygen vacancies (Vo), we reveal three kinds of fatigue in AFE HfxZr1−xO2 (HZO) during uni-directional cycling. The first mechanism is related to the interfacial Vo charge trapping, which accelerates the switching from the P↓↑ state to the P↓↓ state, leading to extrinsic fatigue, and is demonstrated by electrical stress measurements. The other two mechanisms are Vo-related AFE to FE phase transition (PT) and Vo localization inside the HZO films, which are supported by the first-principles calculations. The highest polarization switching barrier occurs when Vo is localized at the tetra-coordinated oxygen sites inside HZO films. This means that tetra-coordinated Vo accumulation leads to less polarization switching, resulting in AFE to FE PT and Vo localization induced fatigue, i.e., intrinsic fatigue. This work reveals the dynamic evolution of Vo during cycling and its impact on AFE properties, paving the way for developing more durable AFE ZrO2-based devices and contributing to the emergence of diverse recovery methods in the future.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0214584</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Antiferroelectricity ; Cycles ; Evolution ; First principles ; Localization ; Oxygen ; Phase transitions ; Polarization ; Switching ; Zirconium dioxide</subject><ispartof>Applied physics letters, 2024-06, Vol.124 (24)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-59959b4f8f47e17ebc11c2f41609ca487c6d597c327577904662cd6091ad29b3</cites><orcidid>0000-0002-7573-176X ; 0009-0001-2734-6920 ; 0000-0002-5876-9897 ; 0000-0002-8517-459X ; 0000-0001-8769-521X ; 0000-0003-4753-0634</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0214584$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27903,27904,76130</link.rule.ids></links><search><creatorcontrib>Qian, Haoji</creatorcontrib><creatorcontrib>Shen, Rongzong</creatorcontrib><creatorcontrib>Zhang, Hongrui</creatorcontrib><creatorcontrib>Xu, Jiacheng</creatorcontrib><creatorcontrib>Lin, Gaobo</creatorcontrib><creatorcontrib>Ding, Yian</creatorcontrib><creatorcontrib>Gu, Jiani</creatorcontrib><creatorcontrib>Yu, Xiao</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Jin, Chengji</creatorcontrib><creatorcontrib>Chen, Jiajia</creatorcontrib><creatorcontrib>Han, Genquan</creatorcontrib><title>Dynamic evolution of oxygen vacancies during cycling in antiferroelectric HfxZr1−xO2</title><title>Applied physics letters</title><description>Antiferroelectric (AFE) ZrO2-based devices are anticipated to exhibit superior endurance properties in comparison to their ferroelectric (FE) counterparts. Nevertheless, the underlying mechanisms of AFE devices remain elusive. In this study, guided by the dynamic evolution of oxygen vacancies (Vo), we reveal three kinds of fatigue in AFE HfxZr1−xO2 (HZO) during uni-directional cycling. The first mechanism is related to the interfacial Vo charge trapping, which accelerates the switching from the P↓↑ state to the P↓↓ state, leading to extrinsic fatigue, and is demonstrated by electrical stress measurements. The other two mechanisms are Vo-related AFE to FE phase transition (PT) and Vo localization inside the HZO films, which are supported by the first-principles calculations. The highest polarization switching barrier occurs when Vo is localized at the tetra-coordinated oxygen sites inside HZO films. This means that tetra-coordinated Vo accumulation leads to less polarization switching, resulting in AFE to FE PT and Vo localization induced fatigue, i.e., intrinsic fatigue. This work reveals the dynamic evolution of Vo during cycling and its impact on AFE properties, paving the way for developing more durable AFE ZrO2-based devices and contributing to the emergence of diverse recovery methods in the future.</description><subject>Antiferroelectricity</subject><subject>Cycles</subject><subject>Evolution</subject><subject>First principles</subject><subject>Localization</subject><subject>Oxygen</subject><subject>Phase transitions</subject><subject>Polarization</subject><subject>Switching</subject><subject>Zirconium dioxide</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsL32DAlcLU3GQymSyl_lQodFNcuBnSTFJSpklNZsrMG7j2EX0Sp7RrV4fD_TgXPoRuAU8A5_SRTTCBjBXZGRoB5jylAMU5GmGMaZoLBpfoKsbNUBmhdIQ-nnsnt1Yleu_rtrHeJd4kvuvX2iV7qaRTVsekaoN160T1qj6kdYl0jTU6BK9rrZowLMxM9xng9_unW5BrdGFkHfXNKcdo-fqynM7S-eLtffo0TxVhpEmZEEysMlOYjGvgeqUAFDEZ5FgomRVc5RUTXFHCGecCZ3lOVDUcQVZErOgY3R1nd8F_tTo25ca3wQ0fS4rzAgTHjA3U_ZFSwccYtCl3wW5l6EvA5cFaycqTtYF9OLJR2UYefPwD_wGSwmxg</recordid><startdate>20240610</startdate><enddate>20240610</enddate><creator>Qian, Haoji</creator><creator>Shen, Rongzong</creator><creator>Zhang, Hongrui</creator><creator>Xu, Jiacheng</creator><creator>Lin, Gaobo</creator><creator>Ding, Yian</creator><creator>Gu, Jiani</creator><creator>Yu, Xiao</creator><creator>Liu, Yan</creator><creator>Jin, Chengji</creator><creator>Chen, Jiajia</creator><creator>Han, Genquan</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7573-176X</orcidid><orcidid>https://orcid.org/0009-0001-2734-6920</orcidid><orcidid>https://orcid.org/0000-0002-5876-9897</orcidid><orcidid>https://orcid.org/0000-0002-8517-459X</orcidid><orcidid>https://orcid.org/0000-0001-8769-521X</orcidid><orcidid>https://orcid.org/0000-0003-4753-0634</orcidid></search><sort><creationdate>20240610</creationdate><title>Dynamic evolution of oxygen vacancies during cycling in antiferroelectric HfxZr1−xO2</title><author>Qian, Haoji ; Shen, Rongzong ; Zhang, Hongrui ; Xu, Jiacheng ; Lin, Gaobo ; Ding, Yian ; Gu, Jiani ; Yu, Xiao ; Liu, Yan ; Jin, Chengji ; Chen, Jiajia ; Han, Genquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-59959b4f8f47e17ebc11c2f41609ca487c6d597c327577904662cd6091ad29b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antiferroelectricity</topic><topic>Cycles</topic><topic>Evolution</topic><topic>First principles</topic><topic>Localization</topic><topic>Oxygen</topic><topic>Phase transitions</topic><topic>Polarization</topic><topic>Switching</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, Haoji</creatorcontrib><creatorcontrib>Shen, Rongzong</creatorcontrib><creatorcontrib>Zhang, Hongrui</creatorcontrib><creatorcontrib>Xu, Jiacheng</creatorcontrib><creatorcontrib>Lin, Gaobo</creatorcontrib><creatorcontrib>Ding, Yian</creatorcontrib><creatorcontrib>Gu, Jiani</creatorcontrib><creatorcontrib>Yu, Xiao</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Jin, Chengji</creatorcontrib><creatorcontrib>Chen, Jiajia</creatorcontrib><creatorcontrib>Han, Genquan</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qian, Haoji</au><au>Shen, Rongzong</au><au>Zhang, Hongrui</au><au>Xu, Jiacheng</au><au>Lin, Gaobo</au><au>Ding, Yian</au><au>Gu, Jiani</au><au>Yu, Xiao</au><au>Liu, Yan</au><au>Jin, Chengji</au><au>Chen, Jiajia</au><au>Han, Genquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic evolution of oxygen vacancies during cycling in antiferroelectric HfxZr1−xO2</atitle><jtitle>Applied physics letters</jtitle><date>2024-06-10</date><risdate>2024</risdate><volume>124</volume><issue>24</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Antiferroelectric (AFE) ZrO2-based devices are anticipated to exhibit superior endurance properties in comparison to their ferroelectric (FE) counterparts. Nevertheless, the underlying mechanisms of AFE devices remain elusive. In this study, guided by the dynamic evolution of oxygen vacancies (Vo), we reveal three kinds of fatigue in AFE HfxZr1−xO2 (HZO) during uni-directional cycling. The first mechanism is related to the interfacial Vo charge trapping, which accelerates the switching from the P↓↑ state to the P↓↓ state, leading to extrinsic fatigue, and is demonstrated by electrical stress measurements. The other two mechanisms are Vo-related AFE to FE phase transition (PT) and Vo localization inside the HZO films, which are supported by the first-principles calculations. The highest polarization switching barrier occurs when Vo is localized at the tetra-coordinated oxygen sites inside HZO films. This means that tetra-coordinated Vo accumulation leads to less polarization switching, resulting in AFE to FE PT and Vo localization induced fatigue, i.e., intrinsic fatigue. This work reveals the dynamic evolution of Vo during cycling and its impact on AFE properties, paving the way for developing more durable AFE ZrO2-based devices and contributing to the emergence of diverse recovery methods in the future.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0214584</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7573-176X</orcidid><orcidid>https://orcid.org/0009-0001-2734-6920</orcidid><orcidid>https://orcid.org/0000-0002-5876-9897</orcidid><orcidid>https://orcid.org/0000-0002-8517-459X</orcidid><orcidid>https://orcid.org/0000-0001-8769-521X</orcidid><orcidid>https://orcid.org/0000-0003-4753-0634</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2024-06, Vol.124 (24) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0214584 |
source | AIP Journals Complete |
subjects | Antiferroelectricity Cycles Evolution First principles Localization Oxygen Phase transitions Polarization Switching Zirconium dioxide |
title | Dynamic evolution of oxygen vacancies during cycling in antiferroelectric HfxZr1−xO2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A00%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20evolution%20of%20oxygen%20vacancies%20during%20cycling%20in%20antiferroelectric%20HfxZr1%E2%88%92xO2&rft.jtitle=Applied%20physics%20letters&rft.au=Qian,%20Haoji&rft.date=2024-06-10&rft.volume=124&rft.issue=24&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0214584&rft_dat=%3Cproquest_scita%3E3068197055%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3068197055&rft_id=info:pmid/&rfr_iscdi=true |