Impingement of vortex dipole on heated boundaries and related thermal plume dynamics

The profound influence of an externally induced vortex dipole on thermal plume dynamics is numerically studied for varying Rayleigh numbers (Ra) employing the Bhatnagar–Gross–Krook collision model-based lattice Boltzmann method with a double distribution function approach. This study is extended to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2024-08, Vol.36 (8)
Hauptverfasser: Kandre, Shivakumar, Hari Prasad, P., Patil, Dhiraj V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Physics of fluids (1994)
container_volume 36
creator Kandre, Shivakumar
Hari Prasad, P.
Patil, Dhiraj V.
description The profound influence of an externally induced vortex dipole on thermal plume dynamics is numerically studied for varying Rayleigh numbers (Ra) employing the Bhatnagar–Gross–Krook collision model-based lattice Boltzmann method with a double distribution function approach. This study is extended to vortex dipole impingement with different types of heated bottom boundaries of two-dimensional domain, such as flat, “V-shaped,” and “inverted-V-shaped.” The vortex dipole impingement with the heated boundaries generates secondary vortices, which in turn produce vortex-driven thermal plumes, thereby advancing plume generation. The subsequent merging of the plumes enhances heat transport and leads to a continuous plume ascent. The presence of convex corners facilitates flow separation and also gives rise to the formation of secondary vortex dipoles, thereby significantly impacting the continuous generation of jet-like plumes when compared to concave configurations. The lack of an external vortex in pure buoyancy-driven flows produces less pronounced jet-like plumes and a relatively low Nusselt number. The boundary types and Ra significantly influence the vorticity production, resulting in higher enstrophy and palinstrophy for convex boundaries compared to flat and concave ones. A lower Prandtl number increases secondary vortices and corner rolls, leading to larger velocity gradients, higher thermal diffusivity, resulting in increased kinetic energy and thermal dissipation rates. The increased cell height enhances heat transfer at the top boundary due to improved heat convection from the slanted boundary and influence of early dipole impingement. Furthermore, kinetic energy dissipates in the dipole-driven flows and increases in the buoyancy-dominated flows.
doi_str_mv 10.1063/5.0214033
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0214033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092931022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-ba3f9c2216b61fed0ee9782351dda69ca2f57c02faeed071530b1c6f54680cd43</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwdZJ0s92jFD8KBS_1vGSTid2ym6xJVuy_d2t79jTDzMMMvITcMpgxkOIxnwFncxDijEwYLMqskFKeH_oCMikFuyRXMe4AQJRcTshm1fWN-8QOXaLe0m8fEv5Q0_S-Reod3aJKaGjtB2dUaDBS5QwN2P6N0xZDp1rat0OH1Oyd6hodr8mFVW3Em1Odko-X583yLVu_v66WT-tMswVPWa2ELTXnTNaSWTSAWBYLLnJmjJKlVtzmhQZuFY7LguUCaqalzedyAdrMxZTcHe_2wX8NGFO180Nw48tKQMlLwYDzUd0flQ4-xoC26kPTqbCvGFSH0Kq8OoU22oejjbpJKjXe_YN_Afe8bDk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092931022</pqid></control><display><type>article</type><title>Impingement of vortex dipole on heated boundaries and related thermal plume dynamics</title><source>AIP Journals Complete</source><creator>Kandre, Shivakumar ; Hari Prasad, P. ; Patil, Dhiraj V.</creator><creatorcontrib>Kandre, Shivakumar ; Hari Prasad, P. ; Patil, Dhiraj V.</creatorcontrib><description>The profound influence of an externally induced vortex dipole on thermal plume dynamics is numerically studied for varying Rayleigh numbers (Ra) employing the Bhatnagar–Gross–Krook collision model-based lattice Boltzmann method with a double distribution function approach. This study is extended to vortex dipole impingement with different types of heated bottom boundaries of two-dimensional domain, such as flat, “V-shaped,” and “inverted-V-shaped.” The vortex dipole impingement with the heated boundaries generates secondary vortices, which in turn produce vortex-driven thermal plumes, thereby advancing plume generation. The subsequent merging of the plumes enhances heat transport and leads to a continuous plume ascent. The presence of convex corners facilitates flow separation and also gives rise to the formation of secondary vortex dipoles, thereby significantly impacting the continuous generation of jet-like plumes when compared to concave configurations. The lack of an external vortex in pure buoyancy-driven flows produces less pronounced jet-like plumes and a relatively low Nusselt number. The boundary types and Ra significantly influence the vorticity production, resulting in higher enstrophy and palinstrophy for convex boundaries compared to flat and concave ones. A lower Prandtl number increases secondary vortices and corner rolls, leading to larger velocity gradients, higher thermal diffusivity, resulting in increased kinetic energy and thermal dissipation rates. The increased cell height enhances heat transfer at the top boundary due to improved heat convection from the slanted boundary and influence of early dipole impingement. Furthermore, kinetic energy dissipates in the dipole-driven flows and increases in the buoyancy-dominated flows.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0214033</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Buoyancy ; Dipoles ; Dissipation ; Distribution functions ; Flow separation ; Fluid flow ; Impingement ; Kinetic energy ; Plumes ; Prandtl number ; Thermal diffusivity ; Velocity gradient ; Vortices ; Vorticity</subject><ispartof>Physics of fluids (1994), 2024-08, Vol.36 (8)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-ba3f9c2216b61fed0ee9782351dda69ca2f57c02faeed071530b1c6f54680cd43</cites><orcidid>0009-0003-3635-7570 ; 0000-0002-5839-8395 ; 0000-0002-6948-175X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4497,27903,27904</link.rule.ids></links><search><creatorcontrib>Kandre, Shivakumar</creatorcontrib><creatorcontrib>Hari Prasad, P.</creatorcontrib><creatorcontrib>Patil, Dhiraj V.</creatorcontrib><title>Impingement of vortex dipole on heated boundaries and related thermal plume dynamics</title><title>Physics of fluids (1994)</title><description>The profound influence of an externally induced vortex dipole on thermal plume dynamics is numerically studied for varying Rayleigh numbers (Ra) employing the Bhatnagar–Gross–Krook collision model-based lattice Boltzmann method with a double distribution function approach. This study is extended to vortex dipole impingement with different types of heated bottom boundaries of two-dimensional domain, such as flat, “V-shaped,” and “inverted-V-shaped.” The vortex dipole impingement with the heated boundaries generates secondary vortices, which in turn produce vortex-driven thermal plumes, thereby advancing plume generation. The subsequent merging of the plumes enhances heat transport and leads to a continuous plume ascent. The presence of convex corners facilitates flow separation and also gives rise to the formation of secondary vortex dipoles, thereby significantly impacting the continuous generation of jet-like plumes when compared to concave configurations. The lack of an external vortex in pure buoyancy-driven flows produces less pronounced jet-like plumes and a relatively low Nusselt number. The boundary types and Ra significantly influence the vorticity production, resulting in higher enstrophy and palinstrophy for convex boundaries compared to flat and concave ones. A lower Prandtl number increases secondary vortices and corner rolls, leading to larger velocity gradients, higher thermal diffusivity, resulting in increased kinetic energy and thermal dissipation rates. The increased cell height enhances heat transfer at the top boundary due to improved heat convection from the slanted boundary and influence of early dipole impingement. Furthermore, kinetic energy dissipates in the dipole-driven flows and increases in the buoyancy-dominated flows.</description><subject>Buoyancy</subject><subject>Dipoles</subject><subject>Dissipation</subject><subject>Distribution functions</subject><subject>Flow separation</subject><subject>Fluid flow</subject><subject>Impingement</subject><subject>Kinetic energy</subject><subject>Plumes</subject><subject>Prandtl number</subject><subject>Thermal diffusivity</subject><subject>Velocity gradient</subject><subject>Vortices</subject><subject>Vorticity</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwdZJ0s92jFD8KBS_1vGSTid2ym6xJVuy_d2t79jTDzMMMvITcMpgxkOIxnwFncxDijEwYLMqskFKeH_oCMikFuyRXMe4AQJRcTshm1fWN-8QOXaLe0m8fEv5Q0_S-Reod3aJKaGjtB2dUaDBS5QwN2P6N0xZDp1rat0OH1Oyd6hodr8mFVW3Em1Odko-X583yLVu_v66WT-tMswVPWa2ELTXnTNaSWTSAWBYLLnJmjJKlVtzmhQZuFY7LguUCaqalzedyAdrMxZTcHe_2wX8NGFO180Nw48tKQMlLwYDzUd0flQ4-xoC26kPTqbCvGFSH0Kq8OoU22oejjbpJKjXe_YN_Afe8bDk</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Kandre, Shivakumar</creator><creator>Hari Prasad, P.</creator><creator>Patil, Dhiraj V.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0003-3635-7570</orcidid><orcidid>https://orcid.org/0000-0002-5839-8395</orcidid><orcidid>https://orcid.org/0000-0002-6948-175X</orcidid></search><sort><creationdate>202408</creationdate><title>Impingement of vortex dipole on heated boundaries and related thermal plume dynamics</title><author>Kandre, Shivakumar ; Hari Prasad, P. ; Patil, Dhiraj V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-ba3f9c2216b61fed0ee9782351dda69ca2f57c02faeed071530b1c6f54680cd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Buoyancy</topic><topic>Dipoles</topic><topic>Dissipation</topic><topic>Distribution functions</topic><topic>Flow separation</topic><topic>Fluid flow</topic><topic>Impingement</topic><topic>Kinetic energy</topic><topic>Plumes</topic><topic>Prandtl number</topic><topic>Thermal diffusivity</topic><topic>Velocity gradient</topic><topic>Vortices</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kandre, Shivakumar</creatorcontrib><creatorcontrib>Hari Prasad, P.</creatorcontrib><creatorcontrib>Patil, Dhiraj V.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kandre, Shivakumar</au><au>Hari Prasad, P.</au><au>Patil, Dhiraj V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impingement of vortex dipole on heated boundaries and related thermal plume dynamics</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-08</date><risdate>2024</risdate><volume>36</volume><issue>8</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The profound influence of an externally induced vortex dipole on thermal plume dynamics is numerically studied for varying Rayleigh numbers (Ra) employing the Bhatnagar–Gross–Krook collision model-based lattice Boltzmann method with a double distribution function approach. This study is extended to vortex dipole impingement with different types of heated bottom boundaries of two-dimensional domain, such as flat, “V-shaped,” and “inverted-V-shaped.” The vortex dipole impingement with the heated boundaries generates secondary vortices, which in turn produce vortex-driven thermal plumes, thereby advancing plume generation. The subsequent merging of the plumes enhances heat transport and leads to a continuous plume ascent. The presence of convex corners facilitates flow separation and also gives rise to the formation of secondary vortex dipoles, thereby significantly impacting the continuous generation of jet-like plumes when compared to concave configurations. The lack of an external vortex in pure buoyancy-driven flows produces less pronounced jet-like plumes and a relatively low Nusselt number. The boundary types and Ra significantly influence the vorticity production, resulting in higher enstrophy and palinstrophy for convex boundaries compared to flat and concave ones. A lower Prandtl number increases secondary vortices and corner rolls, leading to larger velocity gradients, higher thermal diffusivity, resulting in increased kinetic energy and thermal dissipation rates. The increased cell height enhances heat transfer at the top boundary due to improved heat convection from the slanted boundary and influence of early dipole impingement. Furthermore, kinetic energy dissipates in the dipole-driven flows and increases in the buoyancy-dominated flows.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0214033</doi><tpages>18</tpages><orcidid>https://orcid.org/0009-0003-3635-7570</orcidid><orcidid>https://orcid.org/0000-0002-5839-8395</orcidid><orcidid>https://orcid.org/0000-0002-6948-175X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2024-08, Vol.36 (8)
issn 1070-6631
1089-7666
language eng
recordid cdi_scitation_primary_10_1063_5_0214033
source AIP Journals Complete
subjects Buoyancy
Dipoles
Dissipation
Distribution functions
Flow separation
Fluid flow
Impingement
Kinetic energy
Plumes
Prandtl number
Thermal diffusivity
Velocity gradient
Vortices
Vorticity
title Impingement of vortex dipole on heated boundaries and related thermal plume dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A33%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impingement%20of%20vortex%20dipole%20on%20heated%20boundaries%20and%20related%20thermal%20plume%20dynamics&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Kandre,%20Shivakumar&rft.date=2024-08&rft.volume=36&rft.issue=8&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0214033&rft_dat=%3Cproquest_scita%3E3092931022%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092931022&rft_id=info:pmid/&rfr_iscdi=true