Coupled electro-chemo-viscoelastic constitutive model for a supercapacitor electrode

The motion of ions in supercapacitor electrodes produces internal stresses that cause viscoelastic strains. In addition, stresses may be due to external forces applied to structural supercapacitors, which are multifunctional materials that simultaneously store energy and carry structural loads. Ther...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2024-09, Vol.136 (9)
Hauptverfasser: Boyd, James G., Loufakis, Dimitrios, Lutkenhaus, Jodie L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Journal of applied physics
container_volume 136
creator Boyd, James G.
Loufakis, Dimitrios
Lutkenhaus, Jodie L.
description The motion of ions in supercapacitor electrodes produces internal stresses that cause viscoelastic strains. In addition, stresses may be due to external forces applied to structural supercapacitors, which are multifunctional materials that simultaneously store energy and carry structural loads. There are currently no thermodynamics-based models for the coupled electro-chemo-viscoelastic response of electrodes. Here, the same thermodynamics model is used for both the viscoelastic response and the electrochemical response. This mathematical equivalence is a reference from which to study coupling between the viscoelastic and electrochemical responses. The model has two inputs (stress or strain and electric potential or specific charge) and two outputs (strain or stress and specific charge or electric potential). The coupling is studied by adding three constants in the free energy. The convexity of the free energy and the stability of the free response limit the magnitude of the coupling. The unit response matrix is derived, and results are given for the time and frequency domains. The effect of an applied potential on stress is shown to be much more significant than the converse effect. The model compares well to an experiment consisting of a cyclic electric current applied during stress relaxation.
doi_str_mv 10.1063/5.0209577
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0209577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100973391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-28481a6fcf39a14c26ddc9d9222b9d57286015a7ff969e0cdc5464c0fcb039953</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWKsHv8GCJ4WtL8lms-8oxX9Q8FLPS_qS4JZtsybZgt_elfbsaWD4McMMY7ccFhxq-agWIACV1mdsxqHBUisF52wGIHjZoMZLdpXSFoDzRuKMrZdhHHpnC9c7yjGU9OV2oTx0iYLrTcodFRT2k-YxdwdX7IJ1feFDLEyRxsFFMoOhLk_GKcK6a3bhTZ_czUnn7PPleb18K1cfr-_Lp1VJvBG5FE3VcFN78hINr0jU1hJaFEJs0Cotmhq4Mtp7rNEBWVJVXRF42oBEVHLO7o65Qwzfo0u53YYx7qfKVnIA1FIin6j7I0UxpBSdb4fY7Uz8aTm0f6e1qj2dNrEPRzZNk0zuwv4f-BeE12yh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100973391</pqid></control><display><type>article</type><title>Coupled electro-chemo-viscoelastic constitutive model for a supercapacitor electrode</title><source>Alma/SFX Local Collection</source><creator>Boyd, James G. ; Loufakis, Dimitrios ; Lutkenhaus, Jodie L.</creator><creatorcontrib>Boyd, James G. ; Loufakis, Dimitrios ; Lutkenhaus, Jodie L.</creatorcontrib><description>The motion of ions in supercapacitor electrodes produces internal stresses that cause viscoelastic strains. In addition, stresses may be due to external forces applied to structural supercapacitors, which are multifunctional materials that simultaneously store energy and carry structural loads. There are currently no thermodynamics-based models for the coupled electro-chemo-viscoelastic response of electrodes. Here, the same thermodynamics model is used for both the viscoelastic response and the electrochemical response. This mathematical equivalence is a reference from which to study coupling between the viscoelastic and electrochemical responses. The model has two inputs (stress or strain and electric potential or specific charge) and two outputs (strain or stress and specific charge or electric potential). The coupling is studied by adding three constants in the free energy. The convexity of the free energy and the stability of the free response limit the magnitude of the coupling. The unit response matrix is derived, and results are given for the time and frequency domains. The effect of an applied potential on stress is shown to be much more significant than the converse effect. The model compares well to an experiment consisting of a cyclic electric current applied during stress relaxation.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0209577</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Constitutive models ; Convexity ; Coupling ; Electric charge ; Electric potential ; Electrodes ; Free energy ; Multifunctional materials ; Residual stress ; Strain ; Stress relaxation ; Supercapacitors ; Thermodynamics ; Viscoelasticity</subject><ispartof>Journal of applied physics, 2024-09, Vol.136 (9)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-28481a6fcf39a14c26ddc9d9222b9d57286015a7ff969e0cdc5464c0fcb039953</cites><orcidid>0000-0002-2879-1823 ; 0000-0002-2613-6016 ; 0000-0002-3350-207X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Boyd, James G.</creatorcontrib><creatorcontrib>Loufakis, Dimitrios</creatorcontrib><creatorcontrib>Lutkenhaus, Jodie L.</creatorcontrib><title>Coupled electro-chemo-viscoelastic constitutive model for a supercapacitor electrode</title><title>Journal of applied physics</title><description>The motion of ions in supercapacitor electrodes produces internal stresses that cause viscoelastic strains. In addition, stresses may be due to external forces applied to structural supercapacitors, which are multifunctional materials that simultaneously store energy and carry structural loads. There are currently no thermodynamics-based models for the coupled electro-chemo-viscoelastic response of electrodes. Here, the same thermodynamics model is used for both the viscoelastic response and the electrochemical response. This mathematical equivalence is a reference from which to study coupling between the viscoelastic and electrochemical responses. The model has two inputs (stress or strain and electric potential or specific charge) and two outputs (strain or stress and specific charge or electric potential). The coupling is studied by adding three constants in the free energy. The convexity of the free energy and the stability of the free response limit the magnitude of the coupling. The unit response matrix is derived, and results are given for the time and frequency domains. The effect of an applied potential on stress is shown to be much more significant than the converse effect. The model compares well to an experiment consisting of a cyclic electric current applied during stress relaxation.</description><subject>Constitutive models</subject><subject>Convexity</subject><subject>Coupling</subject><subject>Electric charge</subject><subject>Electric potential</subject><subject>Electrodes</subject><subject>Free energy</subject><subject>Multifunctional materials</subject><subject>Residual stress</subject><subject>Strain</subject><subject>Stress relaxation</subject><subject>Supercapacitors</subject><subject>Thermodynamics</subject><subject>Viscoelasticity</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEUxIMoWKsHv8GCJ4WtL8lms-8oxX9Q8FLPS_qS4JZtsybZgt_elfbsaWD4McMMY7ccFhxq-agWIACV1mdsxqHBUisF52wGIHjZoMZLdpXSFoDzRuKMrZdhHHpnC9c7yjGU9OV2oTx0iYLrTcodFRT2k-YxdwdX7IJ1feFDLEyRxsFFMoOhLk_GKcK6a3bhTZ_czUnn7PPleb18K1cfr-_Lp1VJvBG5FE3VcFN78hINr0jU1hJaFEJs0Cotmhq4Mtp7rNEBWVJVXRF42oBEVHLO7o65Qwzfo0u53YYx7qfKVnIA1FIin6j7I0UxpBSdb4fY7Uz8aTm0f6e1qj2dNrEPRzZNk0zuwv4f-BeE12yh</recordid><startdate>20240907</startdate><enddate>20240907</enddate><creator>Boyd, James G.</creator><creator>Loufakis, Dimitrios</creator><creator>Lutkenhaus, Jodie L.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2879-1823</orcidid><orcidid>https://orcid.org/0000-0002-2613-6016</orcidid><orcidid>https://orcid.org/0000-0002-3350-207X</orcidid></search><sort><creationdate>20240907</creationdate><title>Coupled electro-chemo-viscoelastic constitutive model for a supercapacitor electrode</title><author>Boyd, James G. ; Loufakis, Dimitrios ; Lutkenhaus, Jodie L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-28481a6fcf39a14c26ddc9d9222b9d57286015a7ff969e0cdc5464c0fcb039953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Constitutive models</topic><topic>Convexity</topic><topic>Coupling</topic><topic>Electric charge</topic><topic>Electric potential</topic><topic>Electrodes</topic><topic>Free energy</topic><topic>Multifunctional materials</topic><topic>Residual stress</topic><topic>Strain</topic><topic>Stress relaxation</topic><topic>Supercapacitors</topic><topic>Thermodynamics</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boyd, James G.</creatorcontrib><creatorcontrib>Loufakis, Dimitrios</creatorcontrib><creatorcontrib>Lutkenhaus, Jodie L.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boyd, James G.</au><au>Loufakis, Dimitrios</au><au>Lutkenhaus, Jodie L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupled electro-chemo-viscoelastic constitutive model for a supercapacitor electrode</atitle><jtitle>Journal of applied physics</jtitle><date>2024-09-07</date><risdate>2024</risdate><volume>136</volume><issue>9</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The motion of ions in supercapacitor electrodes produces internal stresses that cause viscoelastic strains. In addition, stresses may be due to external forces applied to structural supercapacitors, which are multifunctional materials that simultaneously store energy and carry structural loads. There are currently no thermodynamics-based models for the coupled electro-chemo-viscoelastic response of electrodes. Here, the same thermodynamics model is used for both the viscoelastic response and the electrochemical response. This mathematical equivalence is a reference from which to study coupling between the viscoelastic and electrochemical responses. The model has two inputs (stress or strain and electric potential or specific charge) and two outputs (strain or stress and specific charge or electric potential). The coupling is studied by adding three constants in the free energy. The convexity of the free energy and the stability of the free response limit the magnitude of the coupling. The unit response matrix is derived, and results are given for the time and frequency domains. The effect of an applied potential on stress is shown to be much more significant than the converse effect. The model compares well to an experiment consisting of a cyclic electric current applied during stress relaxation.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0209577</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-2879-1823</orcidid><orcidid>https://orcid.org/0000-0002-2613-6016</orcidid><orcidid>https://orcid.org/0000-0002-3350-207X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2024-09, Vol.136 (9)
issn 0021-8979
1089-7550
language eng
recordid cdi_scitation_primary_10_1063_5_0209577
source Alma/SFX Local Collection
subjects Constitutive models
Convexity
Coupling
Electric charge
Electric potential
Electrodes
Free energy
Multifunctional materials
Residual stress
Strain
Stress relaxation
Supercapacitors
Thermodynamics
Viscoelasticity
title Coupled electro-chemo-viscoelastic constitutive model for a supercapacitor electrode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T07%3A51%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupled%20electro-chemo-viscoelastic%20constitutive%20model%20for%20a%20supercapacitor%20electrode&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Boyd,%20James%20G.&rft.date=2024-09-07&rft.volume=136&rft.issue=9&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0209577&rft_dat=%3Cproquest_scita%3E3100973391%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3100973391&rft_id=info:pmid/&rfr_iscdi=true