X-functionalized molybdenene monolayers (X = O, F, Al, Si, Cl)

Molybdenene synthesized experimentally is the sole Dirac material with metallic properties so far [Sahu et al., Nat. Nanotechnol. 18, 1430 (2023)], exhibiting a wide array of unique and outstanding properties with potentially extensive applications. However, the free-standing molybdenene structure i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2024-06, Vol.124 (24)
Hauptverfasser: Xu, Longyuzhi, Huang, Zhijing, Yang, Li, Zeng, Shuming, Gu, Zonglin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page
container_title Applied physics letters
container_volume 124
creator Xu, Longyuzhi
Huang, Zhijing
Yang, Li
Zeng, Shuming
Gu, Zonglin
description Molybdenene synthesized experimentally is the sole Dirac material with metallic properties so far [Sahu et al., Nat. Nanotechnol. 18, 1430 (2023)], exhibiting a wide array of unique and outstanding properties with potentially extensive applications. However, the free-standing molybdenene structure is not so stable, which highly limits its further exploitation. In this work, we employ density functional theory calculations and ab initio molecular dynamics simulations to investigate molybdenene monolayers functionalized with various elements (X = H, Li, Be, B, C, N, O, F, Na, Mg, Al, Si, P, S, Cl) at both basal surfaces, aiming at achieving the stable free-standing molybdenene derivatives. By evaluating the energetic, mechanical, dynamical, and thermodynamic properties, we confirm some stable monolayer structures of X-functionalized molybdenene (X = O, F, Al, Si, Cl), which are named as X-Molybdenene. Therefore, our findings stabilize the molybdenene via surface functionalization, which is crucial for future experimental validations and applications.
doi_str_mv 10.1063/5.0207442
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0207442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066955651</sourcerecordid><originalsourceid>FETCH-LOGICAL-p148t-1ccffa151774b40e059962e0f325cf961b1f72b62c24b5f4d9d24a1920ab389c3</originalsourceid><addsrcrecordid>eNotUE1Lw0AUXETBWj34DwJeVJL63n6le_BQi1Wh0IMKvS2bzS6kpEnNpod68urf9Je4peUxvPdgGGaGkGuEEYJkD2IEFHLO6QkZIOR5xhDHp2QAACyTSuA5uQhhFV9BGRuQp2Xmt43tq7YxdfXtymTd1ruidE2ceDdtbXauC8nt8u_n9zFikSazNJnUafJepcm0vrskZ97UwV0d95B8zp4_pq_ZfPHyNp3Msw3ycZ-htd4bFJjnvODgQCglqQPPqLBeSSzQ57SQ1FJeCM9LVVJuUFEwBRsry4bk5qC76dqvrQu9XrXbLtoOmoGM2YQUGFn3B1awVW_2ufSmq9am22kEve9IC33siP0D1vJW7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066955651</pqid></control><display><type>article</type><title>X-functionalized molybdenene monolayers (X = O, F, Al, Si, Cl)</title><source>AIP Journals Complete</source><creator>Xu, Longyuzhi ; Huang, Zhijing ; Yang, Li ; Zeng, Shuming ; Gu, Zonglin</creator><creatorcontrib>Xu, Longyuzhi ; Huang, Zhijing ; Yang, Li ; Zeng, Shuming ; Gu, Zonglin</creatorcontrib><description>Molybdenene synthesized experimentally is the sole Dirac material with metallic properties so far [Sahu et al., Nat. Nanotechnol. 18, 1430 (2023)], exhibiting a wide array of unique and outstanding properties with potentially extensive applications. However, the free-standing molybdenene structure is not so stable, which highly limits its further exploitation. In this work, we employ density functional theory calculations and ab initio molecular dynamics simulations to investigate molybdenene monolayers functionalized with various elements (X = H, Li, Be, B, C, N, O, F, Na, Mg, Al, Si, P, S, Cl) at both basal surfaces, aiming at achieving the stable free-standing molybdenene derivatives. By evaluating the energetic, mechanical, dynamical, and thermodynamic properties, we confirm some stable monolayer structures of X-functionalized molybdenene (X = O, F, Al, Si, Cl), which are named as X-Molybdenene. Therefore, our findings stabilize the molybdenene via surface functionalization, which is crucial for future experimental validations and applications.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0207442</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aluminum ; Density functional theory ; Magnesium ; Molecular dynamics ; Monolayers ; Silicon ; Thermodynamic properties</subject><ispartof>Applied physics letters, 2024-06, Vol.124 (24)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0941-6200 ; 0000-0002-6676-5300 ; 0000-0001-7822-5857</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0207442$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,781,785,795,4513,27929,27930,76389</link.rule.ids></links><search><creatorcontrib>Xu, Longyuzhi</creatorcontrib><creatorcontrib>Huang, Zhijing</creatorcontrib><creatorcontrib>Yang, Li</creatorcontrib><creatorcontrib>Zeng, Shuming</creatorcontrib><creatorcontrib>Gu, Zonglin</creatorcontrib><title>X-functionalized molybdenene monolayers (X = O, F, Al, Si, Cl)</title><title>Applied physics letters</title><description>Molybdenene synthesized experimentally is the sole Dirac material with metallic properties so far [Sahu et al., Nat. Nanotechnol. 18, 1430 (2023)], exhibiting a wide array of unique and outstanding properties with potentially extensive applications. However, the free-standing molybdenene structure is not so stable, which highly limits its further exploitation. In this work, we employ density functional theory calculations and ab initio molecular dynamics simulations to investigate molybdenene monolayers functionalized with various elements (X = H, Li, Be, B, C, N, O, F, Na, Mg, Al, Si, P, S, Cl) at both basal surfaces, aiming at achieving the stable free-standing molybdenene derivatives. By evaluating the energetic, mechanical, dynamical, and thermodynamic properties, we confirm some stable monolayer structures of X-functionalized molybdenene (X = O, F, Al, Si, Cl), which are named as X-Molybdenene. Therefore, our findings stabilize the molybdenene via surface functionalization, which is crucial for future experimental validations and applications.</description><subject>Aluminum</subject><subject>Density functional theory</subject><subject>Magnesium</subject><subject>Molecular dynamics</subject><subject>Monolayers</subject><subject>Silicon</subject><subject>Thermodynamic properties</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotUE1Lw0AUXETBWj34DwJeVJL63n6le_BQi1Wh0IMKvS2bzS6kpEnNpod68urf9Je4peUxvPdgGGaGkGuEEYJkD2IEFHLO6QkZIOR5xhDHp2QAACyTSuA5uQhhFV9BGRuQp2Xmt43tq7YxdfXtymTd1ruidE2ceDdtbXauC8nt8u_n9zFikSazNJnUafJepcm0vrskZ97UwV0d95B8zp4_pq_ZfPHyNp3Msw3ycZ-htd4bFJjnvODgQCglqQPPqLBeSSzQ57SQ1FJeCM9LVVJuUFEwBRsry4bk5qC76dqvrQu9XrXbLtoOmoGM2YQUGFn3B1awVW_2ufSmq9am22kEve9IC33siP0D1vJW7g</recordid><startdate>20240610</startdate><enddate>20240610</enddate><creator>Xu, Longyuzhi</creator><creator>Huang, Zhijing</creator><creator>Yang, Li</creator><creator>Zeng, Shuming</creator><creator>Gu, Zonglin</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0941-6200</orcidid><orcidid>https://orcid.org/0000-0002-6676-5300</orcidid><orcidid>https://orcid.org/0000-0001-7822-5857</orcidid></search><sort><creationdate>20240610</creationdate><title>X-functionalized molybdenene monolayers (X = O, F, Al, Si, Cl)</title><author>Xu, Longyuzhi ; Huang, Zhijing ; Yang, Li ; Zeng, Shuming ; Gu, Zonglin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p148t-1ccffa151774b40e059962e0f325cf961b1f72b62c24b5f4d9d24a1920ab389c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aluminum</topic><topic>Density functional theory</topic><topic>Magnesium</topic><topic>Molecular dynamics</topic><topic>Monolayers</topic><topic>Silicon</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Longyuzhi</creatorcontrib><creatorcontrib>Huang, Zhijing</creatorcontrib><creatorcontrib>Yang, Li</creatorcontrib><creatorcontrib>Zeng, Shuming</creatorcontrib><creatorcontrib>Gu, Zonglin</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Longyuzhi</au><au>Huang, Zhijing</au><au>Yang, Li</au><au>Zeng, Shuming</au><au>Gu, Zonglin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>X-functionalized molybdenene monolayers (X = O, F, Al, Si, Cl)</atitle><jtitle>Applied physics letters</jtitle><date>2024-06-10</date><risdate>2024</risdate><volume>124</volume><issue>24</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Molybdenene synthesized experimentally is the sole Dirac material with metallic properties so far [Sahu et al., Nat. Nanotechnol. 18, 1430 (2023)], exhibiting a wide array of unique and outstanding properties with potentially extensive applications. However, the free-standing molybdenene structure is not so stable, which highly limits its further exploitation. In this work, we employ density functional theory calculations and ab initio molecular dynamics simulations to investigate molybdenene monolayers functionalized with various elements (X = H, Li, Be, B, C, N, O, F, Na, Mg, Al, Si, P, S, Cl) at both basal surfaces, aiming at achieving the stable free-standing molybdenene derivatives. By evaluating the energetic, mechanical, dynamical, and thermodynamic properties, we confirm some stable monolayer structures of X-functionalized molybdenene (X = O, F, Al, Si, Cl), which are named as X-Molybdenene. Therefore, our findings stabilize the molybdenene via surface functionalization, which is crucial for future experimental validations and applications.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0207442</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0941-6200</orcidid><orcidid>https://orcid.org/0000-0002-6676-5300</orcidid><orcidid>https://orcid.org/0000-0001-7822-5857</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2024-06, Vol.124 (24)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_5_0207442
source AIP Journals Complete
subjects Aluminum
Density functional theory
Magnesium
Molecular dynamics
Monolayers
Silicon
Thermodynamic properties
title X-functionalized molybdenene monolayers (X = O, F, Al, Si, Cl)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T05%3A32%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=X-functionalized%20molybdenene%20monolayers%20(X%E2%80%89=%E2%80%89O,%20F,%20Al,%20Si,%20Cl)&rft.jtitle=Applied%20physics%20letters&rft.au=Xu,%20Longyuzhi&rft.date=2024-06-10&rft.volume=124&rft.issue=24&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0207442&rft_dat=%3Cproquest_scita%3E3066955651%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066955651&rft_id=info:pmid/&rfr_iscdi=true