Effects of irradiation damage on the hardness and elastic properties of quaternary and high entropy transition metal diborides

Multi-principal component transition metal (TM) diborides represent a class of high-entropy ceramics (HECs) that have received considerable interest in recent years owing to their promising properties for extreme environment applications that include thermal/ environmental barriers, hypersonic vehic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2024-09, Vol.136 (10)
Hauptverfasser: Khanolkar, Amey, Datye, Amit, Zhang, Yan, Dennett, Cody A., Guo, Weiming, Liu, Yang, Weber, William J., Lin, Hua-Tay, Zhang, Yanwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Journal of applied physics
container_volume 136
creator Khanolkar, Amey
Datye, Amit
Zhang, Yan
Dennett, Cody A.
Guo, Weiming
Liu, Yang
Weber, William J.
Lin, Hua-Tay
Zhang, Yanwen
description Multi-principal component transition metal (TM) diborides represent a class of high-entropy ceramics (HECs) that have received considerable interest in recent years owing to their promising properties for extreme environment applications that include thermal/ environmental barriers, hypersonic vehicles, turbine engines, and next-generation nuclear reactors. While the addition of chemical disorder through the random distribution of TM elements on the cation sublattice has offered opportunities to tailor elastic stiffness and hardness, the effects of irradiation-induced structural damage on the physical properties of these complex materials have remained largely unexplored. To this end, changes in the hardness and elastic moduli of a high-entropy TM diboride (Hf0.2Nb0.2Ta0.2Ti0.2Zr0.2)B2 and three of its quaternary subsets following irradiation with 10 MeV gold (Au) ions to fluences of up to 6 × 1015 Au cm−2 are investigated at the micrometer and sub-micrometer length-scales via the dispersion of laser-generated surface acoustic waves (SAW) and nanoindentation, respectively. The nanoindentation measurements show that the TM diborides exhibit an initial increase in hardness following irradiation with energetic Au ions, with a subsequent decrease in hardness following further irradiation. One quaternary composition, (Hf1/3Ta1/3Ti1/3)B2, exhibits a notable exception to the trend and continues to exhibit an increase in hardness with ion irradiation fluence. Although differences in the absolute values of the effective elastic moduli obtained from the measured SAW dispersion and nanoindentation are observed (and attributed to microstructural variations at the measurement length-scale), both techniques yield similar trends in the form of an initial reduction and subsequent saturation in the elastic modulus with increasing ion irradiation fluence. The quaternary TM diboride (Hf1/3Ta1/3Ti1/3)B2 again exhibits a departure from this trend. The high-entropy TM diboride (Hf0.2Nb0.2Ta0.2Ti0.2Zr0.2)B2 exhibits the greatest recovery in hardness and modulus when irradiated to high ion fluences following initial changes at low fluence, indicating superior resistance to radiation-induced damage over its quaternary counterparts. Opportunities for designing HECs with superior hardness and modulus for enhanced radiation resistance (compared to their single constituent counterparts) by tailoring chemical disorder and bond character in the lattice are discussed.
doi_str_mv 10.1063/5.0206224
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0206224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102980346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c209t-8766f5ce6556a5e7c8e0271e0f873a439da19d2c7f1910c51ee67c9e9a96f3193</originalsourceid><addsrcrecordid>eNp90U1PAyEQBmBiNLFWD_4DoidNtg5sYZejMfUjaeJFzwTZoUvT7rZAD73426Xbnj3B4ZmBd4aQWwYTBrJ8EhPgIDmfnpERg1oVlRBwTkYAnBW1qtQluYpxCcBYXaoR-Z05hzZF2jvqQzCNN8n3HW3M2iyQ5ltqkbYmNB3GSE3XUFyZmLylm9BvMCSPQ_F2ZxKGzoT9gFq_aCl2KZs9TcF00Q9915jMijb-pw--wXhNLpxZRbw5nWPy_Tr7enkv5p9vHy_P88JyUKmoKymdsCiFkEZgZWsEXjEEV1elmZaqMUw13FaOKQZWMERZWYXKKOlKpsoxuTv27fPXdbQ-oW1t33U5u-ZTlQfDMro_opxsu8OY9LLf5UirqEsGXNVQTmVWD0dlQx9jQKc3wa9zbs1AH3aghT7tINvHoz28OAz2H_wHJi2HTA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102980346</pqid></control><display><type>article</type><title>Effects of irradiation damage on the hardness and elastic properties of quaternary and high entropy transition metal diborides</title><source>Alma/SFX Local Collection</source><creator>Khanolkar, Amey ; Datye, Amit ; Zhang, Yan ; Dennett, Cody A. ; Guo, Weiming ; Liu, Yang ; Weber, William J. ; Lin, Hua-Tay ; Zhang, Yanwen</creator><creatorcontrib>Khanolkar, Amey ; Datye, Amit ; Zhang, Yan ; Dennett, Cody A. ; Guo, Weiming ; Liu, Yang ; Weber, William J. ; Lin, Hua-Tay ; Zhang, Yanwen ; Idaho National Laboratory (INL), Idaho Falls, ID (United States)</creatorcontrib><description>Multi-principal component transition metal (TM) diborides represent a class of high-entropy ceramics (HECs) that have received considerable interest in recent years owing to their promising properties for extreme environment applications that include thermal/ environmental barriers, hypersonic vehicles, turbine engines, and next-generation nuclear reactors. While the addition of chemical disorder through the random distribution of TM elements on the cation sublattice has offered opportunities to tailor elastic stiffness and hardness, the effects of irradiation-induced structural damage on the physical properties of these complex materials have remained largely unexplored. To this end, changes in the hardness and elastic moduli of a high-entropy TM diboride (Hf0.2Nb0.2Ta0.2Ti0.2Zr0.2)B2 and three of its quaternary subsets following irradiation with 10 MeV gold (Au) ions to fluences of up to 6 × 1015 Au cm−2 are investigated at the micrometer and sub-micrometer length-scales via the dispersion of laser-generated surface acoustic waves (SAW) and nanoindentation, respectively. The nanoindentation measurements show that the TM diborides exhibit an initial increase in hardness following irradiation with energetic Au ions, with a subsequent decrease in hardness following further irradiation. One quaternary composition, (Hf1/3Ta1/3Ti1/3)B2, exhibits a notable exception to the trend and continues to exhibit an increase in hardness with ion irradiation fluence. Although differences in the absolute values of the effective elastic moduli obtained from the measured SAW dispersion and nanoindentation are observed (and attributed to microstructural variations at the measurement length-scale), both techniques yield similar trends in the form of an initial reduction and subsequent saturation in the elastic modulus with increasing ion irradiation fluence. The quaternary TM diboride (Hf1/3Ta1/3Ti1/3)B2 again exhibits a departure from this trend. The high-entropy TM diboride (Hf0.2Nb0.2Ta0.2Ti0.2Zr0.2)B2 exhibits the greatest recovery in hardness and modulus when irradiated to high ion fluences following initial changes at low fluence, indicating superior resistance to radiation-induced damage over its quaternary counterparts. Opportunities for designing HECs with superior hardness and modulus for enhanced radiation resistance (compared to their single constituent counterparts) by tailoring chemical disorder and bond character in the lattice are discussed.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0206224</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>ceramics ; Chemical bonds ; Chemical damage ; crystallographic defects ; elastic modulus ; Elastic properties ; elasticity ; Entropy ; Extreme environments ; Fluence ; Hardness ; high entropy ceramics ; Hypersonic vehicles ; ion beam analysis ; Ion irradiation ; MATERIALS SCIENCE ; Micrometers ; Modulus of elasticity ; nano-indentation ; Nanoindentation ; Nuclear reactors ; Physical properties ; Poisson's ratio ; Radiation ; Radiation damage ; Radiation effects ; Radiation tolerance ; shear modulus ; Surface acoustic waves ; transition metal diborides ; Transition metals ; Trends ; Turbine engines</subject><ispartof>Journal of applied physics, 2024-09, Vol.136 (10)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c209t-8766f5ce6556a5e7c8e0271e0f873a439da19d2c7f1910c51ee67c9e9a96f3193</cites><orcidid>0000-0002-4096-0052 ; 0000-0003-4878-3625 ; 0000-0003-2989-9550 ; 0000-0003-1833-3885 ; 0000-0003-0816-5507 ; 0000-0002-2363-1601 ; 0000-0002-1776-0642 ; 0000-0002-9017-7365 ; 0000000308165507 ; 0000000329899550 ; 0000000240960052 ; 0000000223631601 ; 0000000217760642 ; 0000000290177365 ; 0000000318333885 ; 0000000348783625</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2499791$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Khanolkar, Amey</creatorcontrib><creatorcontrib>Datye, Amit</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Dennett, Cody A.</creatorcontrib><creatorcontrib>Guo, Weiming</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Weber, William J.</creatorcontrib><creatorcontrib>Lin, Hua-Tay</creatorcontrib><creatorcontrib>Zhang, Yanwen</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL), Idaho Falls, ID (United States)</creatorcontrib><title>Effects of irradiation damage on the hardness and elastic properties of quaternary and high entropy transition metal diborides</title><title>Journal of applied physics</title><description>Multi-principal component transition metal (TM) diborides represent a class of high-entropy ceramics (HECs) that have received considerable interest in recent years owing to their promising properties for extreme environment applications that include thermal/ environmental barriers, hypersonic vehicles, turbine engines, and next-generation nuclear reactors. While the addition of chemical disorder through the random distribution of TM elements on the cation sublattice has offered opportunities to tailor elastic stiffness and hardness, the effects of irradiation-induced structural damage on the physical properties of these complex materials have remained largely unexplored. To this end, changes in the hardness and elastic moduli of a high-entropy TM diboride (Hf0.2Nb0.2Ta0.2Ti0.2Zr0.2)B2 and three of its quaternary subsets following irradiation with 10 MeV gold (Au) ions to fluences of up to 6 × 1015 Au cm−2 are investigated at the micrometer and sub-micrometer length-scales via the dispersion of laser-generated surface acoustic waves (SAW) and nanoindentation, respectively. The nanoindentation measurements show that the TM diborides exhibit an initial increase in hardness following irradiation with energetic Au ions, with a subsequent decrease in hardness following further irradiation. One quaternary composition, (Hf1/3Ta1/3Ti1/3)B2, exhibits a notable exception to the trend and continues to exhibit an increase in hardness with ion irradiation fluence. Although differences in the absolute values of the effective elastic moduli obtained from the measured SAW dispersion and nanoindentation are observed (and attributed to microstructural variations at the measurement length-scale), both techniques yield similar trends in the form of an initial reduction and subsequent saturation in the elastic modulus with increasing ion irradiation fluence. The quaternary TM diboride (Hf1/3Ta1/3Ti1/3)B2 again exhibits a departure from this trend. The high-entropy TM diboride (Hf0.2Nb0.2Ta0.2Ti0.2Zr0.2)B2 exhibits the greatest recovery in hardness and modulus when irradiated to high ion fluences following initial changes at low fluence, indicating superior resistance to radiation-induced damage over its quaternary counterparts. Opportunities for designing HECs with superior hardness and modulus for enhanced radiation resistance (compared to their single constituent counterparts) by tailoring chemical disorder and bond character in the lattice are discussed.</description><subject>ceramics</subject><subject>Chemical bonds</subject><subject>Chemical damage</subject><subject>crystallographic defects</subject><subject>elastic modulus</subject><subject>Elastic properties</subject><subject>elasticity</subject><subject>Entropy</subject><subject>Extreme environments</subject><subject>Fluence</subject><subject>Hardness</subject><subject>high entropy ceramics</subject><subject>Hypersonic vehicles</subject><subject>ion beam analysis</subject><subject>Ion irradiation</subject><subject>MATERIALS SCIENCE</subject><subject>Micrometers</subject><subject>Modulus of elasticity</subject><subject>nano-indentation</subject><subject>Nanoindentation</subject><subject>Nuclear reactors</subject><subject>Physical properties</subject><subject>Poisson's ratio</subject><subject>Radiation</subject><subject>Radiation damage</subject><subject>Radiation effects</subject><subject>Radiation tolerance</subject><subject>shear modulus</subject><subject>Surface acoustic waves</subject><subject>transition metal diborides</subject><subject>Transition metals</subject><subject>Trends</subject><subject>Turbine engines</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90U1PAyEQBmBiNLFWD_4DoidNtg5sYZejMfUjaeJFzwTZoUvT7rZAD73426Xbnj3B4ZmBd4aQWwYTBrJ8EhPgIDmfnpERg1oVlRBwTkYAnBW1qtQluYpxCcBYXaoR-Z05hzZF2jvqQzCNN8n3HW3M2iyQ5ltqkbYmNB3GSE3XUFyZmLylm9BvMCSPQ_F2ZxKGzoT9gFq_aCl2KZs9TcF00Q9915jMijb-pw--wXhNLpxZRbw5nWPy_Tr7enkv5p9vHy_P88JyUKmoKymdsCiFkEZgZWsEXjEEV1elmZaqMUw13FaOKQZWMERZWYXKKOlKpsoxuTv27fPXdbQ-oW1t33U5u-ZTlQfDMro_opxsu8OY9LLf5UirqEsGXNVQTmVWD0dlQx9jQKc3wa9zbs1AH3aghT7tINvHoz28OAz2H_wHJi2HTA</recordid><startdate>20240914</startdate><enddate>20240914</enddate><creator>Khanolkar, Amey</creator><creator>Datye, Amit</creator><creator>Zhang, Yan</creator><creator>Dennett, Cody A.</creator><creator>Guo, Weiming</creator><creator>Liu, Yang</creator><creator>Weber, William J.</creator><creator>Lin, Hua-Tay</creator><creator>Zhang, Yanwen</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4096-0052</orcidid><orcidid>https://orcid.org/0000-0003-4878-3625</orcidid><orcidid>https://orcid.org/0000-0003-2989-9550</orcidid><orcidid>https://orcid.org/0000-0003-1833-3885</orcidid><orcidid>https://orcid.org/0000-0003-0816-5507</orcidid><orcidid>https://orcid.org/0000-0002-2363-1601</orcidid><orcidid>https://orcid.org/0000-0002-1776-0642</orcidid><orcidid>https://orcid.org/0000-0002-9017-7365</orcidid><orcidid>https://orcid.org/0000000308165507</orcidid><orcidid>https://orcid.org/0000000329899550</orcidid><orcidid>https://orcid.org/0000000240960052</orcidid><orcidid>https://orcid.org/0000000223631601</orcidid><orcidid>https://orcid.org/0000000217760642</orcidid><orcidid>https://orcid.org/0000000290177365</orcidid><orcidid>https://orcid.org/0000000318333885</orcidid><orcidid>https://orcid.org/0000000348783625</orcidid></search><sort><creationdate>20240914</creationdate><title>Effects of irradiation damage on the hardness and elastic properties of quaternary and high entropy transition metal diborides</title><author>Khanolkar, Amey ; Datye, Amit ; Zhang, Yan ; Dennett, Cody A. ; Guo, Weiming ; Liu, Yang ; Weber, William J. ; Lin, Hua-Tay ; Zhang, Yanwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c209t-8766f5ce6556a5e7c8e0271e0f873a439da19d2c7f1910c51ee67c9e9a96f3193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ceramics</topic><topic>Chemical bonds</topic><topic>Chemical damage</topic><topic>crystallographic defects</topic><topic>elastic modulus</topic><topic>Elastic properties</topic><topic>elasticity</topic><topic>Entropy</topic><topic>Extreme environments</topic><topic>Fluence</topic><topic>Hardness</topic><topic>high entropy ceramics</topic><topic>Hypersonic vehicles</topic><topic>ion beam analysis</topic><topic>Ion irradiation</topic><topic>MATERIALS SCIENCE</topic><topic>Micrometers</topic><topic>Modulus of elasticity</topic><topic>nano-indentation</topic><topic>Nanoindentation</topic><topic>Nuclear reactors</topic><topic>Physical properties</topic><topic>Poisson's ratio</topic><topic>Radiation</topic><topic>Radiation damage</topic><topic>Radiation effects</topic><topic>Radiation tolerance</topic><topic>shear modulus</topic><topic>Surface acoustic waves</topic><topic>transition metal diborides</topic><topic>Transition metals</topic><topic>Trends</topic><topic>Turbine engines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khanolkar, Amey</creatorcontrib><creatorcontrib>Datye, Amit</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Dennett, Cody A.</creatorcontrib><creatorcontrib>Guo, Weiming</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Weber, William J.</creatorcontrib><creatorcontrib>Lin, Hua-Tay</creatorcontrib><creatorcontrib>Zhang, Yanwen</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL), Idaho Falls, ID (United States)</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khanolkar, Amey</au><au>Datye, Amit</au><au>Zhang, Yan</au><au>Dennett, Cody A.</au><au>Guo, Weiming</au><au>Liu, Yang</au><au>Weber, William J.</au><au>Lin, Hua-Tay</au><au>Zhang, Yanwen</au><aucorp>Idaho National Laboratory (INL), Idaho Falls, ID (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of irradiation damage on the hardness and elastic properties of quaternary and high entropy transition metal diborides</atitle><jtitle>Journal of applied physics</jtitle><date>2024-09-14</date><risdate>2024</risdate><volume>136</volume><issue>10</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Multi-principal component transition metal (TM) diborides represent a class of high-entropy ceramics (HECs) that have received considerable interest in recent years owing to their promising properties for extreme environment applications that include thermal/ environmental barriers, hypersonic vehicles, turbine engines, and next-generation nuclear reactors. While the addition of chemical disorder through the random distribution of TM elements on the cation sublattice has offered opportunities to tailor elastic stiffness and hardness, the effects of irradiation-induced structural damage on the physical properties of these complex materials have remained largely unexplored. To this end, changes in the hardness and elastic moduli of a high-entropy TM diboride (Hf0.2Nb0.2Ta0.2Ti0.2Zr0.2)B2 and three of its quaternary subsets following irradiation with 10 MeV gold (Au) ions to fluences of up to 6 × 1015 Au cm−2 are investigated at the micrometer and sub-micrometer length-scales via the dispersion of laser-generated surface acoustic waves (SAW) and nanoindentation, respectively. The nanoindentation measurements show that the TM diborides exhibit an initial increase in hardness following irradiation with energetic Au ions, with a subsequent decrease in hardness following further irradiation. One quaternary composition, (Hf1/3Ta1/3Ti1/3)B2, exhibits a notable exception to the trend and continues to exhibit an increase in hardness with ion irradiation fluence. Although differences in the absolute values of the effective elastic moduli obtained from the measured SAW dispersion and nanoindentation are observed (and attributed to microstructural variations at the measurement length-scale), both techniques yield similar trends in the form of an initial reduction and subsequent saturation in the elastic modulus with increasing ion irradiation fluence. The quaternary TM diboride (Hf1/3Ta1/3Ti1/3)B2 again exhibits a departure from this trend. The high-entropy TM diboride (Hf0.2Nb0.2Ta0.2Ti0.2Zr0.2)B2 exhibits the greatest recovery in hardness and modulus when irradiated to high ion fluences following initial changes at low fluence, indicating superior resistance to radiation-induced damage over its quaternary counterparts. Opportunities for designing HECs with superior hardness and modulus for enhanced radiation resistance (compared to their single constituent counterparts) by tailoring chemical disorder and bond character in the lattice are discussed.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0206224</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4096-0052</orcidid><orcidid>https://orcid.org/0000-0003-4878-3625</orcidid><orcidid>https://orcid.org/0000-0003-2989-9550</orcidid><orcidid>https://orcid.org/0000-0003-1833-3885</orcidid><orcidid>https://orcid.org/0000-0003-0816-5507</orcidid><orcidid>https://orcid.org/0000-0002-2363-1601</orcidid><orcidid>https://orcid.org/0000-0002-1776-0642</orcidid><orcidid>https://orcid.org/0000-0002-9017-7365</orcidid><orcidid>https://orcid.org/0000000308165507</orcidid><orcidid>https://orcid.org/0000000329899550</orcidid><orcidid>https://orcid.org/0000000240960052</orcidid><orcidid>https://orcid.org/0000000223631601</orcidid><orcidid>https://orcid.org/0000000217760642</orcidid><orcidid>https://orcid.org/0000000290177365</orcidid><orcidid>https://orcid.org/0000000318333885</orcidid><orcidid>https://orcid.org/0000000348783625</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2024-09, Vol.136 (10)
issn 0021-8979
1089-7550
language eng
recordid cdi_scitation_primary_10_1063_5_0206224
source Alma/SFX Local Collection
subjects ceramics
Chemical bonds
Chemical damage
crystallographic defects
elastic modulus
Elastic properties
elasticity
Entropy
Extreme environments
Fluence
Hardness
high entropy ceramics
Hypersonic vehicles
ion beam analysis
Ion irradiation
MATERIALS SCIENCE
Micrometers
Modulus of elasticity
nano-indentation
Nanoindentation
Nuclear reactors
Physical properties
Poisson's ratio
Radiation
Radiation damage
Radiation effects
Radiation tolerance
shear modulus
Surface acoustic waves
transition metal diborides
Transition metals
Trends
Turbine engines
title Effects of irradiation damage on the hardness and elastic properties of quaternary and high entropy transition metal diborides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A18%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20irradiation%20damage%20on%20the%20hardness%20and%20elastic%20properties%20of%20quaternary%20and%20high%20entropy%20transition%20metal%20diborides&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Khanolkar,%20Amey&rft.aucorp=Idaho%20National%20Laboratory%20(INL),%20Idaho%20Falls,%20ID%20(United%20States)&rft.date=2024-09-14&rft.volume=136&rft.issue=10&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0206224&rft_dat=%3Cproquest_scita%3E3102980346%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102980346&rft_id=info:pmid/&rfr_iscdi=true