Emulating Ebbinghaus forgetting behavior in a neuromorphic device based on low dimensional h-BN

Artificial synaptic devices that can mimic the biological synaptic functions of learning and forgetting are essential for the realization of neuromorphic computation, which could replace the von Neumann architecture. In this Letter, we have described a high-performing ultraviolet photodetector (wave...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2024-08, Vol.14 (8), p.085010-085010-6
Hauptverfasser: Sunny, Ashly, Thamankar, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 085010-6
container_issue 8
container_start_page 085010
container_title AIP advances
container_volume 14
creator Sunny, Ashly
Thamankar, R.
description Artificial synaptic devices that can mimic the biological synaptic functions of learning and forgetting are essential for the realization of neuromorphic computation, which could replace the von Neumann architecture. In this Letter, we have described a high-performing ultraviolet photodetector (wavelength 375 nm) using thin films of single-layer hexagonal boron nitride (h-BN) for potential use in fabricating a neuromorphic device. Furthermore, the classical Ebbinghaus forgetting curve can be optimized using various parameters such as the optical pulse width, number of pulses, and frequency of pulses. Our results show that the characteristic time constant (τ) has much more variability, indicating better performance control than the Ebbinghaus exponent (β). Furthermore, the performance of the optical synapse is very stable for low energy consumption, as low as 2–3 pJ.
doi_str_mv 10.1063/5.0203002
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0203002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_32071fc5881a49379ce7e4e885c426de</doaj_id><sourcerecordid>3088837339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-10699e45853f43de5f5eb0fc35d9ebc1fddddbdeb13e3c1da17a8b17ec8951fb3</originalsourceid><addsrcrecordid>eNp9kctKAzEUhgdRsNQufIOAK4WpyWTSySy11AsU3eg65HLSpkwnNZmp-PbGThFXns05_Hz855ZllwRPCZ7RWzbFBaYYFyfZqCCM57QoZqd_6vNsEuMGpyhrgnk5ysRi2zeyc-0KLZRKaS37iKwPK-gOqoK13DsfkGuRRC30wW992K2dRgb2TgNSMoJBvkWN_0TGbaGNzreyQev8_uUiO7OyiTA55nH2_rB4mz_ly9fH5_ndMtcFp12exq9rKBln1JbUALMMFLaaMlOD0sSaFMqAIhSoJkaSSnJFKtC8ZsQqOs6eB1_j5UbsgtvK8CW8dOIgpH2EDJ3TDQha4IpYzTgnsqxpVWuooATOmS6LmYHkdTV47YL_6CF2YuP7kDaKgmLOOa0orRN1PVA6-BgD2N-uBIufdwgmju9I7M3ARu26dG3f_gN_A86zidc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3088837339</pqid></control><display><type>article</type><title>Emulating Ebbinghaus forgetting behavior in a neuromorphic device based on low dimensional h-BN</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Sunny, Ashly ; Thamankar, R.</creator><creatorcontrib>Sunny, Ashly ; Thamankar, R.</creatorcontrib><description>Artificial synaptic devices that can mimic the biological synaptic functions of learning and forgetting are essential for the realization of neuromorphic computation, which could replace the von Neumann architecture. In this Letter, we have described a high-performing ultraviolet photodetector (wavelength 375 nm) using thin films of single-layer hexagonal boron nitride (h-BN) for potential use in fabricating a neuromorphic device. Furthermore, the classical Ebbinghaus forgetting curve can be optimized using various parameters such as the optical pulse width, number of pulses, and frequency of pulses. Our results show that the characteristic time constant (τ) has much more variability, indicating better performance control than the Ebbinghaus exponent (β). Furthermore, the performance of the optical synapse is very stable for low energy consumption, as low as 2–3 pJ.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0203002</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Biological computing ; Boron nitride ; Energy consumption ; Neuromorphic computing ; Pulse duration ; Thin films ; Time constant ; Ultraviolet detectors</subject><ispartof>AIP advances, 2024-08, Vol.14 (8), p.085010-085010-6</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c283t-10699e45853f43de5f5eb0fc35d9ebc1fddddbdeb13e3c1da17a8b17ec8951fb3</cites><orcidid>0000-0003-3743-8180 ; 0000-0002-1761-1970</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,27929,27930</link.rule.ids></links><search><creatorcontrib>Sunny, Ashly</creatorcontrib><creatorcontrib>Thamankar, R.</creatorcontrib><title>Emulating Ebbinghaus forgetting behavior in a neuromorphic device based on low dimensional h-BN</title><title>AIP advances</title><description>Artificial synaptic devices that can mimic the biological synaptic functions of learning and forgetting are essential for the realization of neuromorphic computation, which could replace the von Neumann architecture. In this Letter, we have described a high-performing ultraviolet photodetector (wavelength 375 nm) using thin films of single-layer hexagonal boron nitride (h-BN) for potential use in fabricating a neuromorphic device. Furthermore, the classical Ebbinghaus forgetting curve can be optimized using various parameters such as the optical pulse width, number of pulses, and frequency of pulses. Our results show that the characteristic time constant (τ) has much more variability, indicating better performance control than the Ebbinghaus exponent (β). Furthermore, the performance of the optical synapse is very stable for low energy consumption, as low as 2–3 pJ.</description><subject>Biological computing</subject><subject>Boron nitride</subject><subject>Energy consumption</subject><subject>Neuromorphic computing</subject><subject>Pulse duration</subject><subject>Thin films</subject><subject>Time constant</subject><subject>Ultraviolet detectors</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kctKAzEUhgdRsNQufIOAK4WpyWTSySy11AsU3eg65HLSpkwnNZmp-PbGThFXns05_Hz855ZllwRPCZ7RWzbFBaYYFyfZqCCM57QoZqd_6vNsEuMGpyhrgnk5ysRi2zeyc-0KLZRKaS37iKwPK-gOqoK13DsfkGuRRC30wW992K2dRgb2TgNSMoJBvkWN_0TGbaGNzreyQev8_uUiO7OyiTA55nH2_rB4mz_ly9fH5_ndMtcFp12exq9rKBln1JbUALMMFLaaMlOD0sSaFMqAIhSoJkaSSnJFKtC8ZsQqOs6eB1_j5UbsgtvK8CW8dOIgpH2EDJ3TDQha4IpYzTgnsqxpVWuooATOmS6LmYHkdTV47YL_6CF2YuP7kDaKgmLOOa0orRN1PVA6-BgD2N-uBIufdwgmju9I7M3ARu26dG3f_gN_A86zidc</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Sunny, Ashly</creator><creator>Thamankar, R.</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3743-8180</orcidid><orcidid>https://orcid.org/0000-0002-1761-1970</orcidid></search><sort><creationdate>20240801</creationdate><title>Emulating Ebbinghaus forgetting behavior in a neuromorphic device based on low dimensional h-BN</title><author>Sunny, Ashly ; Thamankar, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-10699e45853f43de5f5eb0fc35d9ebc1fddddbdeb13e3c1da17a8b17ec8951fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biological computing</topic><topic>Boron nitride</topic><topic>Energy consumption</topic><topic>Neuromorphic computing</topic><topic>Pulse duration</topic><topic>Thin films</topic><topic>Time constant</topic><topic>Ultraviolet detectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sunny, Ashly</creatorcontrib><creatorcontrib>Thamankar, R.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sunny, Ashly</au><au>Thamankar, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emulating Ebbinghaus forgetting behavior in a neuromorphic device based on low dimensional h-BN</atitle><jtitle>AIP advances</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>14</volume><issue>8</issue><spage>085010</spage><epage>085010-6</epage><pages>085010-085010-6</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Artificial synaptic devices that can mimic the biological synaptic functions of learning and forgetting are essential for the realization of neuromorphic computation, which could replace the von Neumann architecture. In this Letter, we have described a high-performing ultraviolet photodetector (wavelength 375 nm) using thin films of single-layer hexagonal boron nitride (h-BN) for potential use in fabricating a neuromorphic device. Furthermore, the classical Ebbinghaus forgetting curve can be optimized using various parameters such as the optical pulse width, number of pulses, and frequency of pulses. Our results show that the characteristic time constant (τ) has much more variability, indicating better performance control than the Ebbinghaus exponent (β). Furthermore, the performance of the optical synapse is very stable for low energy consumption, as low as 2–3 pJ.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0203002</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3743-8180</orcidid><orcidid>https://orcid.org/0000-0002-1761-1970</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2024-08, Vol.14 (8), p.085010-085010-6
issn 2158-3226
2158-3226
language eng
recordid cdi_scitation_primary_10_1063_5_0203002
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Biological computing
Boron nitride
Energy consumption
Neuromorphic computing
Pulse duration
Thin films
Time constant
Ultraviolet detectors
title Emulating Ebbinghaus forgetting behavior in a neuromorphic device based on low dimensional h-BN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T09%3A33%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emulating%20Ebbinghaus%20forgetting%20behavior%20in%20a%20neuromorphic%20device%20based%20on%20low%20dimensional%20h-BN&rft.jtitle=AIP%20advances&rft.au=Sunny,%20Ashly&rft.date=2024-08-01&rft.volume=14&rft.issue=8&rft.spage=085010&rft.epage=085010-6&rft.pages=085010-085010-6&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0203002&rft_dat=%3Cproquest_scita%3E3088837339%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3088837339&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_32071fc5881a49379ce7e4e885c426de&rfr_iscdi=true