Molecular dynamics simulations of heat transport using machine-learned potentials: A mini-review and tutorial on GPUMD with neuroevolution potentials
Molecular dynamics (MD) simulations play an important role in understanding and engineering heat transport properties of complex materials. An essential requirement for reliably predicting heat transport properties is the use of accurate and efficient interatomic potentials. Recently, machine-learne...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2024-04, Vol.135 (16) |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 16 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 135 |
creator | Dong, Haikuan Shi, Yongbo Ying, Penghua Xu, Ke Liang, Ting Wang, Yanzhou Zeng, Zezhu Wu, Xin Zhou, Wenjiang Xiong, Shiyun Chen, Shunda Fan, Zheyong |
description | Molecular dynamics (MD) simulations play an important role in understanding and engineering heat transport properties of complex materials. An essential requirement for reliably predicting heat transport properties is the use of accurate and efficient interatomic potentials. Recently, machine-learned potentials (MLPs) have shown great promise in providing the required accuracy for a broad range of materials. In this mini-review and tutorial, we delve into the fundamentals of heat transport, explore pertinent MD simulation methods, and survey the applications of MLPs in MD simulations of heat transport. Furthermore, we provide a step-by-step tutorial on developing MLPs for highly efficient and predictive heat transport simulations, utilizing the neuroevolution potentials as implemented in the GPUMD package. Our aim with this mini-review and tutorial is to empower researchers with valuable insights into cutting-edge methodologies that can significantly enhance the accuracy and efficiency of MD simulations for heat transport studies. |
doi_str_mv | 10.1063/5.0200833 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0200833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3044671378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-cfef2f29826d1f4796c4c6c2627dbf622efdbc1c89d5d27bbfa4a289bf217bf73</originalsourceid><addsrcrecordid>eNp9kE9LwzAYxoMoOKcHv0HAk0Jn_rRN421MncKGHty5pGniMtpkJunGPojf187t4MnTA-_743ngB8A1RiOMcnqfjRBBqKD0BAwwKnjCsgydggFCBCcFZ_wcXISwQgjjgvIB-J67RsmuER7WOytaIwMMpu0P0TgboNNwqUSE0Qsb1s5H2AVjP2Er5NJYlTRKeKtquHZR2WhEEx7gGLbGmsSrjVFbKGwNYxed75_QWTh9X8wf4dbEJbSq805tXNPtx_50XIIz3Ye6OuYQLJ6fPiYvyext-joZzxJJCYuJ1EoTTXhB8hrrlPFcpjKXJCesrnROiNJ1JbEseJ3VhFWVFqkgBa80wazSjA7BzaF37d1Xp0IsV67ztp8sKUrTnGHKip66PVDSuxC80uXam1b4XYlRubdeZuXRes_eHdggTfx1-A_8A_kBhfU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044671378</pqid></control><display><type>article</type><title>Molecular dynamics simulations of heat transport using machine-learned potentials: A mini-review and tutorial on GPUMD with neuroevolution potentials</title><source>Alma/SFX Local Collection</source><creator>Dong, Haikuan ; Shi, Yongbo ; Ying, Penghua ; Xu, Ke ; Liang, Ting ; Wang, Yanzhou ; Zeng, Zezhu ; Wu, Xin ; Zhou, Wenjiang ; Xiong, Shiyun ; Chen, Shunda ; Fan, Zheyong</creator><creatorcontrib>Dong, Haikuan ; Shi, Yongbo ; Ying, Penghua ; Xu, Ke ; Liang, Ting ; Wang, Yanzhou ; Zeng, Zezhu ; Wu, Xin ; Zhou, Wenjiang ; Xiong, Shiyun ; Chen, Shunda ; Fan, Zheyong</creatorcontrib><description>Molecular dynamics (MD) simulations play an important role in understanding and engineering heat transport properties of complex materials. An essential requirement for reliably predicting heat transport properties is the use of accurate and efficient interatomic potentials. Recently, machine-learned potentials (MLPs) have shown great promise in providing the required accuracy for a broad range of materials. In this mini-review and tutorial, we delve into the fundamentals of heat transport, explore pertinent MD simulation methods, and survey the applications of MLPs in MD simulations of heat transport. Furthermore, we provide a step-by-step tutorial on developing MLPs for highly efficient and predictive heat transport simulations, utilizing the neuroevolution potentials as implemented in the GPUMD package. Our aim with this mini-review and tutorial is to empower researchers with valuable insights into cutting-edge methodologies that can significantly enhance the accuracy and efficiency of MD simulations for heat transport studies.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0200833</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Accuracy ; Molecular dynamics ; Simulation ; Transport properties</subject><ispartof>Journal of applied physics, 2024-04, Vol.135 (16)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-cfef2f29826d1f4796c4c6c2627dbf622efdbc1c89d5d27bbfa4a289bf217bf73</citedby><cites>FETCH-LOGICAL-c327t-cfef2f29826d1f4796c4c6c2627dbf622efdbc1c89d5d27bbfa4a289bf217bf73</cites><orcidid>0000-0002-3116-365X ; 0000-0001-5126-4928 ; 0000-0002-2253-8210 ; 0000-0002-5506-7507 ; 0000-0001-5254-5297 ; 0000-0002-7179-371X ; 0000-0001-5555-0024 ; 0000-0002-5758-2369 ; 0000-0001-9870-0467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Dong, Haikuan</creatorcontrib><creatorcontrib>Shi, Yongbo</creatorcontrib><creatorcontrib>Ying, Penghua</creatorcontrib><creatorcontrib>Xu, Ke</creatorcontrib><creatorcontrib>Liang, Ting</creatorcontrib><creatorcontrib>Wang, Yanzhou</creatorcontrib><creatorcontrib>Zeng, Zezhu</creatorcontrib><creatorcontrib>Wu, Xin</creatorcontrib><creatorcontrib>Zhou, Wenjiang</creatorcontrib><creatorcontrib>Xiong, Shiyun</creatorcontrib><creatorcontrib>Chen, Shunda</creatorcontrib><creatorcontrib>Fan, Zheyong</creatorcontrib><title>Molecular dynamics simulations of heat transport using machine-learned potentials: A mini-review and tutorial on GPUMD with neuroevolution potentials</title><title>Journal of applied physics</title><description>Molecular dynamics (MD) simulations play an important role in understanding and engineering heat transport properties of complex materials. An essential requirement for reliably predicting heat transport properties is the use of accurate and efficient interatomic potentials. Recently, machine-learned potentials (MLPs) have shown great promise in providing the required accuracy for a broad range of materials. In this mini-review and tutorial, we delve into the fundamentals of heat transport, explore pertinent MD simulation methods, and survey the applications of MLPs in MD simulations of heat transport. Furthermore, we provide a step-by-step tutorial on developing MLPs for highly efficient and predictive heat transport simulations, utilizing the neuroevolution potentials as implemented in the GPUMD package. Our aim with this mini-review and tutorial is to empower researchers with valuable insights into cutting-edge methodologies that can significantly enhance the accuracy and efficiency of MD simulations for heat transport studies.</description><subject>Accuracy</subject><subject>Molecular dynamics</subject><subject>Simulation</subject><subject>Transport properties</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LwzAYxoMoOKcHv0HAk0Jn_rRN421MncKGHty5pGniMtpkJunGPojf187t4MnTA-_743ngB8A1RiOMcnqfjRBBqKD0BAwwKnjCsgydggFCBCcFZ_wcXISwQgjjgvIB-J67RsmuER7WOytaIwMMpu0P0TgboNNwqUSE0Qsb1s5H2AVjP2Er5NJYlTRKeKtquHZR2WhEEx7gGLbGmsSrjVFbKGwNYxed75_QWTh9X8wf4dbEJbSq805tXNPtx_50XIIz3Ye6OuYQLJ6fPiYvyext-joZzxJJCYuJ1EoTTXhB8hrrlPFcpjKXJCesrnROiNJ1JbEseJ3VhFWVFqkgBa80wazSjA7BzaF37d1Xp0IsV67ztp8sKUrTnGHKip66PVDSuxC80uXam1b4XYlRubdeZuXRes_eHdggTfx1-A_8A_kBhfU</recordid><startdate>20240428</startdate><enddate>20240428</enddate><creator>Dong, Haikuan</creator><creator>Shi, Yongbo</creator><creator>Ying, Penghua</creator><creator>Xu, Ke</creator><creator>Liang, Ting</creator><creator>Wang, Yanzhou</creator><creator>Zeng, Zezhu</creator><creator>Wu, Xin</creator><creator>Zhou, Wenjiang</creator><creator>Xiong, Shiyun</creator><creator>Chen, Shunda</creator><creator>Fan, Zheyong</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3116-365X</orcidid><orcidid>https://orcid.org/0000-0001-5126-4928</orcidid><orcidid>https://orcid.org/0000-0002-2253-8210</orcidid><orcidid>https://orcid.org/0000-0002-5506-7507</orcidid><orcidid>https://orcid.org/0000-0001-5254-5297</orcidid><orcidid>https://orcid.org/0000-0002-7179-371X</orcidid><orcidid>https://orcid.org/0000-0001-5555-0024</orcidid><orcidid>https://orcid.org/0000-0002-5758-2369</orcidid><orcidid>https://orcid.org/0000-0001-9870-0467</orcidid></search><sort><creationdate>20240428</creationdate><title>Molecular dynamics simulations of heat transport using machine-learned potentials: A mini-review and tutorial on GPUMD with neuroevolution potentials</title><author>Dong, Haikuan ; Shi, Yongbo ; Ying, Penghua ; Xu, Ke ; Liang, Ting ; Wang, Yanzhou ; Zeng, Zezhu ; Wu, Xin ; Zhou, Wenjiang ; Xiong, Shiyun ; Chen, Shunda ; Fan, Zheyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-cfef2f29826d1f4796c4c6c2627dbf622efdbc1c89d5d27bbfa4a289bf217bf73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Molecular dynamics</topic><topic>Simulation</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Haikuan</creatorcontrib><creatorcontrib>Shi, Yongbo</creatorcontrib><creatorcontrib>Ying, Penghua</creatorcontrib><creatorcontrib>Xu, Ke</creatorcontrib><creatorcontrib>Liang, Ting</creatorcontrib><creatorcontrib>Wang, Yanzhou</creatorcontrib><creatorcontrib>Zeng, Zezhu</creatorcontrib><creatorcontrib>Wu, Xin</creatorcontrib><creatorcontrib>Zhou, Wenjiang</creatorcontrib><creatorcontrib>Xiong, Shiyun</creatorcontrib><creatorcontrib>Chen, Shunda</creatorcontrib><creatorcontrib>Fan, Zheyong</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Haikuan</au><au>Shi, Yongbo</au><au>Ying, Penghua</au><au>Xu, Ke</au><au>Liang, Ting</au><au>Wang, Yanzhou</au><au>Zeng, Zezhu</au><au>Wu, Xin</au><au>Zhou, Wenjiang</au><au>Xiong, Shiyun</au><au>Chen, Shunda</au><au>Fan, Zheyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular dynamics simulations of heat transport using machine-learned potentials: A mini-review and tutorial on GPUMD with neuroevolution potentials</atitle><jtitle>Journal of applied physics</jtitle><date>2024-04-28</date><risdate>2024</risdate><volume>135</volume><issue>16</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Molecular dynamics (MD) simulations play an important role in understanding and engineering heat transport properties of complex materials. An essential requirement for reliably predicting heat transport properties is the use of accurate and efficient interatomic potentials. Recently, machine-learned potentials (MLPs) have shown great promise in providing the required accuracy for a broad range of materials. In this mini-review and tutorial, we delve into the fundamentals of heat transport, explore pertinent MD simulation methods, and survey the applications of MLPs in MD simulations of heat transport. Furthermore, we provide a step-by-step tutorial on developing MLPs for highly efficient and predictive heat transport simulations, utilizing the neuroevolution potentials as implemented in the GPUMD package. Our aim with this mini-review and tutorial is to empower researchers with valuable insights into cutting-edge methodologies that can significantly enhance the accuracy and efficiency of MD simulations for heat transport studies.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0200833</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-3116-365X</orcidid><orcidid>https://orcid.org/0000-0001-5126-4928</orcidid><orcidid>https://orcid.org/0000-0002-2253-8210</orcidid><orcidid>https://orcid.org/0000-0002-5506-7507</orcidid><orcidid>https://orcid.org/0000-0001-5254-5297</orcidid><orcidid>https://orcid.org/0000-0002-7179-371X</orcidid><orcidid>https://orcid.org/0000-0001-5555-0024</orcidid><orcidid>https://orcid.org/0000-0002-5758-2369</orcidid><orcidid>https://orcid.org/0000-0001-9870-0467</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2024-04, Vol.135 (16) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0200833 |
source | Alma/SFX Local Collection |
subjects | Accuracy Molecular dynamics Simulation Transport properties |
title | Molecular dynamics simulations of heat transport using machine-learned potentials: A mini-review and tutorial on GPUMD with neuroevolution potentials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A58%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20dynamics%20simulations%20of%20heat%20transport%20using%20machine-learned%20potentials:%20A%20mini-review%20and%20tutorial%20on%20GPUMD%20with%20neuroevolution%20potentials&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Dong,%20Haikuan&rft.date=2024-04-28&rft.volume=135&rft.issue=16&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0200833&rft_dat=%3Cproquest_scita%3E3044671378%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3044671378&rft_id=info:pmid/&rfr_iscdi=true |