Molecular dynamics simulations of heat transport using machine-learned potentials: A mini-review and tutorial on GPUMD with neuroevolution potentials

Molecular dynamics (MD) simulations play an important role in understanding and engineering heat transport properties of complex materials. An essential requirement for reliably predicting heat transport properties is the use of accurate and efficient interatomic potentials. Recently, machine-learne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2024-04, Vol.135 (16)
Hauptverfasser: Dong, Haikuan, Shi, Yongbo, Ying, Penghua, Xu, Ke, Liang, Ting, Wang, Yanzhou, Zeng, Zezhu, Wu, Xin, Zhou, Wenjiang, Xiong, Shiyun, Chen, Shunda, Fan, Zheyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page
container_title Journal of applied physics
container_volume 135
creator Dong, Haikuan
Shi, Yongbo
Ying, Penghua
Xu, Ke
Liang, Ting
Wang, Yanzhou
Zeng, Zezhu
Wu, Xin
Zhou, Wenjiang
Xiong, Shiyun
Chen, Shunda
Fan, Zheyong
description Molecular dynamics (MD) simulations play an important role in understanding and engineering heat transport properties of complex materials. An essential requirement for reliably predicting heat transport properties is the use of accurate and efficient interatomic potentials. Recently, machine-learned potentials (MLPs) have shown great promise in providing the required accuracy for a broad range of materials. In this mini-review and tutorial, we delve into the fundamentals of heat transport, explore pertinent MD simulation methods, and survey the applications of MLPs in MD simulations of heat transport. Furthermore, we provide a step-by-step tutorial on developing MLPs for highly efficient and predictive heat transport simulations, utilizing the neuroevolution potentials as implemented in the GPUMD package. Our aim with this mini-review and tutorial is to empower researchers with valuable insights into cutting-edge methodologies that can significantly enhance the accuracy and efficiency of MD simulations for heat transport studies.
doi_str_mv 10.1063/5.0200833
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0200833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3044671378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-cfef2f29826d1f4796c4c6c2627dbf622efdbc1c89d5d27bbfa4a289bf217bf73</originalsourceid><addsrcrecordid>eNp9kE9LwzAYxoMoOKcHv0HAk0Jn_rRN421MncKGHty5pGniMtpkJunGPojf187t4MnTA-_743ngB8A1RiOMcnqfjRBBqKD0BAwwKnjCsgydggFCBCcFZ_wcXISwQgjjgvIB-J67RsmuER7WOytaIwMMpu0P0TgboNNwqUSE0Qsb1s5H2AVjP2Er5NJYlTRKeKtquHZR2WhEEx7gGLbGmsSrjVFbKGwNYxed75_QWTh9X8wf4dbEJbSq805tXNPtx_50XIIz3Ye6OuYQLJ6fPiYvyext-joZzxJJCYuJ1EoTTXhB8hrrlPFcpjKXJCesrnROiNJ1JbEseJ3VhFWVFqkgBa80wazSjA7BzaF37d1Xp0IsV67ztp8sKUrTnGHKip66PVDSuxC80uXam1b4XYlRubdeZuXRes_eHdggTfx1-A_8A_kBhfU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044671378</pqid></control><display><type>article</type><title>Molecular dynamics simulations of heat transport using machine-learned potentials: A mini-review and tutorial on GPUMD with neuroevolution potentials</title><source>Alma/SFX Local Collection</source><creator>Dong, Haikuan ; Shi, Yongbo ; Ying, Penghua ; Xu, Ke ; Liang, Ting ; Wang, Yanzhou ; Zeng, Zezhu ; Wu, Xin ; Zhou, Wenjiang ; Xiong, Shiyun ; Chen, Shunda ; Fan, Zheyong</creator><creatorcontrib>Dong, Haikuan ; Shi, Yongbo ; Ying, Penghua ; Xu, Ke ; Liang, Ting ; Wang, Yanzhou ; Zeng, Zezhu ; Wu, Xin ; Zhou, Wenjiang ; Xiong, Shiyun ; Chen, Shunda ; Fan, Zheyong</creatorcontrib><description>Molecular dynamics (MD) simulations play an important role in understanding and engineering heat transport properties of complex materials. An essential requirement for reliably predicting heat transport properties is the use of accurate and efficient interatomic potentials. Recently, machine-learned potentials (MLPs) have shown great promise in providing the required accuracy for a broad range of materials. In this mini-review and tutorial, we delve into the fundamentals of heat transport, explore pertinent MD simulation methods, and survey the applications of MLPs in MD simulations of heat transport. Furthermore, we provide a step-by-step tutorial on developing MLPs for highly efficient and predictive heat transport simulations, utilizing the neuroevolution potentials as implemented in the GPUMD package. Our aim with this mini-review and tutorial is to empower researchers with valuable insights into cutting-edge methodologies that can significantly enhance the accuracy and efficiency of MD simulations for heat transport studies.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0200833</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Accuracy ; Molecular dynamics ; Simulation ; Transport properties</subject><ispartof>Journal of applied physics, 2024-04, Vol.135 (16)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-cfef2f29826d1f4796c4c6c2627dbf622efdbc1c89d5d27bbfa4a289bf217bf73</citedby><cites>FETCH-LOGICAL-c327t-cfef2f29826d1f4796c4c6c2627dbf622efdbc1c89d5d27bbfa4a289bf217bf73</cites><orcidid>0000-0002-3116-365X ; 0000-0001-5126-4928 ; 0000-0002-2253-8210 ; 0000-0002-5506-7507 ; 0000-0001-5254-5297 ; 0000-0002-7179-371X ; 0000-0001-5555-0024 ; 0000-0002-5758-2369 ; 0000-0001-9870-0467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Dong, Haikuan</creatorcontrib><creatorcontrib>Shi, Yongbo</creatorcontrib><creatorcontrib>Ying, Penghua</creatorcontrib><creatorcontrib>Xu, Ke</creatorcontrib><creatorcontrib>Liang, Ting</creatorcontrib><creatorcontrib>Wang, Yanzhou</creatorcontrib><creatorcontrib>Zeng, Zezhu</creatorcontrib><creatorcontrib>Wu, Xin</creatorcontrib><creatorcontrib>Zhou, Wenjiang</creatorcontrib><creatorcontrib>Xiong, Shiyun</creatorcontrib><creatorcontrib>Chen, Shunda</creatorcontrib><creatorcontrib>Fan, Zheyong</creatorcontrib><title>Molecular dynamics simulations of heat transport using machine-learned potentials: A mini-review and tutorial on GPUMD with neuroevolution potentials</title><title>Journal of applied physics</title><description>Molecular dynamics (MD) simulations play an important role in understanding and engineering heat transport properties of complex materials. An essential requirement for reliably predicting heat transport properties is the use of accurate and efficient interatomic potentials. Recently, machine-learned potentials (MLPs) have shown great promise in providing the required accuracy for a broad range of materials. In this mini-review and tutorial, we delve into the fundamentals of heat transport, explore pertinent MD simulation methods, and survey the applications of MLPs in MD simulations of heat transport. Furthermore, we provide a step-by-step tutorial on developing MLPs for highly efficient and predictive heat transport simulations, utilizing the neuroevolution potentials as implemented in the GPUMD package. Our aim with this mini-review and tutorial is to empower researchers with valuable insights into cutting-edge methodologies that can significantly enhance the accuracy and efficiency of MD simulations for heat transport studies.</description><subject>Accuracy</subject><subject>Molecular dynamics</subject><subject>Simulation</subject><subject>Transport properties</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LwzAYxoMoOKcHv0HAk0Jn_rRN421MncKGHty5pGniMtpkJunGPojf187t4MnTA-_743ngB8A1RiOMcnqfjRBBqKD0BAwwKnjCsgydggFCBCcFZ_wcXISwQgjjgvIB-J67RsmuER7WOytaIwMMpu0P0TgboNNwqUSE0Qsb1s5H2AVjP2Er5NJYlTRKeKtquHZR2WhEEx7gGLbGmsSrjVFbKGwNYxed75_QWTh9X8wf4dbEJbSq805tXNPtx_50XIIz3Ye6OuYQLJ6fPiYvyext-joZzxJJCYuJ1EoTTXhB8hrrlPFcpjKXJCesrnROiNJ1JbEseJ3VhFWVFqkgBa80wazSjA7BzaF37d1Xp0IsV67ztp8sKUrTnGHKip66PVDSuxC80uXam1b4XYlRubdeZuXRes_eHdggTfx1-A_8A_kBhfU</recordid><startdate>20240428</startdate><enddate>20240428</enddate><creator>Dong, Haikuan</creator><creator>Shi, Yongbo</creator><creator>Ying, Penghua</creator><creator>Xu, Ke</creator><creator>Liang, Ting</creator><creator>Wang, Yanzhou</creator><creator>Zeng, Zezhu</creator><creator>Wu, Xin</creator><creator>Zhou, Wenjiang</creator><creator>Xiong, Shiyun</creator><creator>Chen, Shunda</creator><creator>Fan, Zheyong</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3116-365X</orcidid><orcidid>https://orcid.org/0000-0001-5126-4928</orcidid><orcidid>https://orcid.org/0000-0002-2253-8210</orcidid><orcidid>https://orcid.org/0000-0002-5506-7507</orcidid><orcidid>https://orcid.org/0000-0001-5254-5297</orcidid><orcidid>https://orcid.org/0000-0002-7179-371X</orcidid><orcidid>https://orcid.org/0000-0001-5555-0024</orcidid><orcidid>https://orcid.org/0000-0002-5758-2369</orcidid><orcidid>https://orcid.org/0000-0001-9870-0467</orcidid></search><sort><creationdate>20240428</creationdate><title>Molecular dynamics simulations of heat transport using machine-learned potentials: A mini-review and tutorial on GPUMD with neuroevolution potentials</title><author>Dong, Haikuan ; Shi, Yongbo ; Ying, Penghua ; Xu, Ke ; Liang, Ting ; Wang, Yanzhou ; Zeng, Zezhu ; Wu, Xin ; Zhou, Wenjiang ; Xiong, Shiyun ; Chen, Shunda ; Fan, Zheyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-cfef2f29826d1f4796c4c6c2627dbf622efdbc1c89d5d27bbfa4a289bf217bf73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Molecular dynamics</topic><topic>Simulation</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Haikuan</creatorcontrib><creatorcontrib>Shi, Yongbo</creatorcontrib><creatorcontrib>Ying, Penghua</creatorcontrib><creatorcontrib>Xu, Ke</creatorcontrib><creatorcontrib>Liang, Ting</creatorcontrib><creatorcontrib>Wang, Yanzhou</creatorcontrib><creatorcontrib>Zeng, Zezhu</creatorcontrib><creatorcontrib>Wu, Xin</creatorcontrib><creatorcontrib>Zhou, Wenjiang</creatorcontrib><creatorcontrib>Xiong, Shiyun</creatorcontrib><creatorcontrib>Chen, Shunda</creatorcontrib><creatorcontrib>Fan, Zheyong</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Haikuan</au><au>Shi, Yongbo</au><au>Ying, Penghua</au><au>Xu, Ke</au><au>Liang, Ting</au><au>Wang, Yanzhou</au><au>Zeng, Zezhu</au><au>Wu, Xin</au><au>Zhou, Wenjiang</au><au>Xiong, Shiyun</au><au>Chen, Shunda</au><au>Fan, Zheyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular dynamics simulations of heat transport using machine-learned potentials: A mini-review and tutorial on GPUMD with neuroevolution potentials</atitle><jtitle>Journal of applied physics</jtitle><date>2024-04-28</date><risdate>2024</risdate><volume>135</volume><issue>16</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Molecular dynamics (MD) simulations play an important role in understanding and engineering heat transport properties of complex materials. An essential requirement for reliably predicting heat transport properties is the use of accurate and efficient interatomic potentials. Recently, machine-learned potentials (MLPs) have shown great promise in providing the required accuracy for a broad range of materials. In this mini-review and tutorial, we delve into the fundamentals of heat transport, explore pertinent MD simulation methods, and survey the applications of MLPs in MD simulations of heat transport. Furthermore, we provide a step-by-step tutorial on developing MLPs for highly efficient and predictive heat transport simulations, utilizing the neuroevolution potentials as implemented in the GPUMD package. Our aim with this mini-review and tutorial is to empower researchers with valuable insights into cutting-edge methodologies that can significantly enhance the accuracy and efficiency of MD simulations for heat transport studies.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0200833</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-3116-365X</orcidid><orcidid>https://orcid.org/0000-0001-5126-4928</orcidid><orcidid>https://orcid.org/0000-0002-2253-8210</orcidid><orcidid>https://orcid.org/0000-0002-5506-7507</orcidid><orcidid>https://orcid.org/0000-0001-5254-5297</orcidid><orcidid>https://orcid.org/0000-0002-7179-371X</orcidid><orcidid>https://orcid.org/0000-0001-5555-0024</orcidid><orcidid>https://orcid.org/0000-0002-5758-2369</orcidid><orcidid>https://orcid.org/0000-0001-9870-0467</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2024-04, Vol.135 (16)
issn 0021-8979
1089-7550
language eng
recordid cdi_scitation_primary_10_1063_5_0200833
source Alma/SFX Local Collection
subjects Accuracy
Molecular dynamics
Simulation
Transport properties
title Molecular dynamics simulations of heat transport using machine-learned potentials: A mini-review and tutorial on GPUMD with neuroevolution potentials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A58%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20dynamics%20simulations%20of%20heat%20transport%20using%20machine-learned%20potentials:%20A%20mini-review%20and%20tutorial%20on%20GPUMD%20with%20neuroevolution%20potentials&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Dong,%20Haikuan&rft.date=2024-04-28&rft.volume=135&rft.issue=16&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0200833&rft_dat=%3Cproquest_scita%3E3044671378%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3044671378&rft_id=info:pmid/&rfr_iscdi=true