Atomistic-level analysis of nanoindentation-induced plasticity in arc-melted NiFeCrCo alloys: The role of stacking faults
Concentrated solid solution alloys (CSAs) have attracted attention for their promising properties; however, current manufacturing methods face challenges in complexity, high costs, and limited scalability, raising concerns about industrial viability. The prevalent technique, arc melting, yields high...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2024-05, Vol.135 (18) |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 18 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 135 |
creator | Domínguez-Gutiérrez, F. J. Olejarz, A. Landeiro Dos Reis, M. Wyszkowska, E. Kalita, D. Huo, W. Y. Jozwik, I. Kurpaska, L. Papanikolaou, S. Alava, M. J. Muszka, K. |
description | Concentrated solid solution alloys (CSAs) have attracted attention for their promising properties; however, current manufacturing methods face challenges in complexity, high costs, and limited scalability, raising concerns about industrial viability. The prevalent technique, arc melting, yields high-purity samples with complex shapes. In this study, we explore nanoindentation tests at room temperature where arc-melted samples exhibit larger grain sizes, diminishing the effects of grain boundaries on the results. Motivated by these findings, our investigation focuses on the atomistic-level exploration of plasticity mechanisms, specifically dislocation nucleation and propagation during nanoindentation tests. The intricate chemistry of NiFeCrCo CSA influences pile-ups and slip traces, aiming to elucidate plastic deformation by considering both pristine and pre-existing stacking fault tetrahedra. Our analysis scrutinizes dynamic deformation processes, defect nucleation, and evolution, complemented by stress–strain and dislocation densities–strain curves illustrating the hardening mechanism of defective materials. Additionally, we examine surface morphology and plastic deformation through atomic shear strain and displacement mappings. This integrated approach provides insights into the complex interplay between the material structure and mechanical behavior, paving the way for an enhanced understanding and potential advancements in CSA applications. |
doi_str_mv | 10.1063/5.0200717 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0200717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3052208432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-5690afa5d29b9d66e85da202c96605f4c0c736c6bcd98d913ff5c56250b49a3a3</originalsourceid><addsrcrecordid>eNp9kcFqGzEQhkVJoY6bQ99AkFML64wkS7vqzZi4KZjk4pzFWKttlMgrV9IG9u27rkN7y2mGmW_-wzeEfGGwYKDEjVwAB6hZ_YHMGDS6qqWECzID4KxqdK0_kcucnwEYa4SekXFV4sHn4m0V3KsLFHsMY_aZxo722Efft64vWHzsq6kfrGvpMeDpwpeR-p5istXBhTIt7v3GrdM6Ugwhjvk73T05mmJwp7Rc0L74_hftcAglfyYfOwzZXb3VOXnc3O7Wd9X24cfP9WpbWcFZqaTSgB3Kluu9bpVyjWyRA7daKZDd0oKthbJqb1vdtJqJrpNWKi5hv9QoUMzJ13PuEwZzTP6AaTQRvblbbc1pBssaJjHwyib2-sweU_w9uFzMcxzSZCQbAZJzaJaC_0-0KeacXPcvloE5fcFI8_aFif12ZvOk66_Fd-A_ctWHBw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3052208432</pqid></control><display><type>article</type><title>Atomistic-level analysis of nanoindentation-induced plasticity in arc-melted NiFeCrCo alloys: The role of stacking faults</title><source>Alma/SFX Local Collection</source><creator>Domínguez-Gutiérrez, F. J. ; Olejarz, A. ; Landeiro Dos Reis, M. ; Wyszkowska, E. ; Kalita, D. ; Huo, W. Y. ; Jozwik, I. ; Kurpaska, L. ; Papanikolaou, S. ; Alava, M. J. ; Muszka, K.</creator><creatorcontrib>Domínguez-Gutiérrez, F. J. ; Olejarz, A. ; Landeiro Dos Reis, M. ; Wyszkowska, E. ; Kalita, D. ; Huo, W. Y. ; Jozwik, I. ; Kurpaska, L. ; Papanikolaou, S. ; Alava, M. J. ; Muszka, K.</creatorcontrib><description>Concentrated solid solution alloys (CSAs) have attracted attention for their promising properties; however, current manufacturing methods face challenges in complexity, high costs, and limited scalability, raising concerns about industrial viability. The prevalent technique, arc melting, yields high-purity samples with complex shapes. In this study, we explore nanoindentation tests at room temperature where arc-melted samples exhibit larger grain sizes, diminishing the effects of grain boundaries on the results. Motivated by these findings, our investigation focuses on the atomistic-level exploration of plasticity mechanisms, specifically dislocation nucleation and propagation during nanoindentation tests. The intricate chemistry of NiFeCrCo CSA influences pile-ups and slip traces, aiming to elucidate plastic deformation by considering both pristine and pre-existing stacking fault tetrahedra. Our analysis scrutinizes dynamic deformation processes, defect nucleation, and evolution, complemented by stress–strain and dislocation densities–strain curves illustrating the hardening mechanism of defective materials. Additionally, we examine surface morphology and plastic deformation through atomic shear strain and displacement mappings. This integrated approach provides insights into the complex interplay between the material structure and mechanical behavior, paving the way for an enhanced understanding and potential advancements in CSA applications.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0200717</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Complexity ; Crystal defects ; Deformation ; Dislocation density ; Electric arc melting ; Grain boundaries ; Grain size ; Mechanical properties ; Nanoindentation ; Nucleation ; Physics ; Plastic deformation ; Plastic properties ; Production methods ; Room temperature ; Shear strain ; Solid solutions ; Stacking faults ; Tetrahedra</subject><ispartof>Journal of applied physics, 2024-05, Vol.135 (18)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c321t-5690afa5d29b9d66e85da202c96605f4c0c736c6bcd98d913ff5c56250b49a3a3</cites><orcidid>0000-0001-8449-7795 ; 0000-0002-7031-9303 ; 0000-0002-7670-8342 ; 0000-0001-8297-9045 ; 0000-0001-9249-5079 ; 0000-0001-5239-1275 ; 0000-0003-1135-6873 ; 0000-0001-5750-2691 ; 0000-0002-1429-0083 ; 0000-0002-6054-4929 ; 0000-0002-2970-4090</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04709790$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Domínguez-Gutiérrez, F. J.</creatorcontrib><creatorcontrib>Olejarz, A.</creatorcontrib><creatorcontrib>Landeiro Dos Reis, M.</creatorcontrib><creatorcontrib>Wyszkowska, E.</creatorcontrib><creatorcontrib>Kalita, D.</creatorcontrib><creatorcontrib>Huo, W. Y.</creatorcontrib><creatorcontrib>Jozwik, I.</creatorcontrib><creatorcontrib>Kurpaska, L.</creatorcontrib><creatorcontrib>Papanikolaou, S.</creatorcontrib><creatorcontrib>Alava, M. J.</creatorcontrib><creatorcontrib>Muszka, K.</creatorcontrib><title>Atomistic-level analysis of nanoindentation-induced plasticity in arc-melted NiFeCrCo alloys: The role of stacking faults</title><title>Journal of applied physics</title><description>Concentrated solid solution alloys (CSAs) have attracted attention for their promising properties; however, current manufacturing methods face challenges in complexity, high costs, and limited scalability, raising concerns about industrial viability. The prevalent technique, arc melting, yields high-purity samples with complex shapes. In this study, we explore nanoindentation tests at room temperature where arc-melted samples exhibit larger grain sizes, diminishing the effects of grain boundaries on the results. Motivated by these findings, our investigation focuses on the atomistic-level exploration of plasticity mechanisms, specifically dislocation nucleation and propagation during nanoindentation tests. The intricate chemistry of NiFeCrCo CSA influences pile-ups and slip traces, aiming to elucidate plastic deformation by considering both pristine and pre-existing stacking fault tetrahedra. Our analysis scrutinizes dynamic deformation processes, defect nucleation, and evolution, complemented by stress–strain and dislocation densities–strain curves illustrating the hardening mechanism of defective materials. Additionally, we examine surface morphology and plastic deformation through atomic shear strain and displacement mappings. This integrated approach provides insights into the complex interplay between the material structure and mechanical behavior, paving the way for an enhanced understanding and potential advancements in CSA applications.</description><subject>Complexity</subject><subject>Crystal defects</subject><subject>Deformation</subject><subject>Dislocation density</subject><subject>Electric arc melting</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Mechanical properties</subject><subject>Nanoindentation</subject><subject>Nucleation</subject><subject>Physics</subject><subject>Plastic deformation</subject><subject>Plastic properties</subject><subject>Production methods</subject><subject>Room temperature</subject><subject>Shear strain</subject><subject>Solid solutions</subject><subject>Stacking faults</subject><subject>Tetrahedra</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kcFqGzEQhkVJoY6bQ99AkFML64wkS7vqzZi4KZjk4pzFWKttlMgrV9IG9u27rkN7y2mGmW_-wzeEfGGwYKDEjVwAB6hZ_YHMGDS6qqWECzID4KxqdK0_kcucnwEYa4SekXFV4sHn4m0V3KsLFHsMY_aZxo722Efft64vWHzsq6kfrGvpMeDpwpeR-p5istXBhTIt7v3GrdM6Ugwhjvk73T05mmJwp7Rc0L74_hftcAglfyYfOwzZXb3VOXnc3O7Wd9X24cfP9WpbWcFZqaTSgB3Kluu9bpVyjWyRA7daKZDd0oKthbJqb1vdtJqJrpNWKi5hv9QoUMzJ13PuEwZzTP6AaTQRvblbbc1pBssaJjHwyib2-sweU_w9uFzMcxzSZCQbAZJzaJaC_0-0KeacXPcvloE5fcFI8_aFif12ZvOk66_Fd-A_ctWHBw</recordid><startdate>20240514</startdate><enddate>20240514</enddate><creator>Domínguez-Gutiérrez, F. J.</creator><creator>Olejarz, A.</creator><creator>Landeiro Dos Reis, M.</creator><creator>Wyszkowska, E.</creator><creator>Kalita, D.</creator><creator>Huo, W. Y.</creator><creator>Jozwik, I.</creator><creator>Kurpaska, L.</creator><creator>Papanikolaou, S.</creator><creator>Alava, M. J.</creator><creator>Muszka, K.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8449-7795</orcidid><orcidid>https://orcid.org/0000-0002-7031-9303</orcidid><orcidid>https://orcid.org/0000-0002-7670-8342</orcidid><orcidid>https://orcid.org/0000-0001-8297-9045</orcidid><orcidid>https://orcid.org/0000-0001-9249-5079</orcidid><orcidid>https://orcid.org/0000-0001-5239-1275</orcidid><orcidid>https://orcid.org/0000-0003-1135-6873</orcidid><orcidid>https://orcid.org/0000-0001-5750-2691</orcidid><orcidid>https://orcid.org/0000-0002-1429-0083</orcidid><orcidid>https://orcid.org/0000-0002-6054-4929</orcidid><orcidid>https://orcid.org/0000-0002-2970-4090</orcidid></search><sort><creationdate>20240514</creationdate><title>Atomistic-level analysis of nanoindentation-induced plasticity in arc-melted NiFeCrCo alloys: The role of stacking faults</title><author>Domínguez-Gutiérrez, F. J. ; Olejarz, A. ; Landeiro Dos Reis, M. ; Wyszkowska, E. ; Kalita, D. ; Huo, W. Y. ; Jozwik, I. ; Kurpaska, L. ; Papanikolaou, S. ; Alava, M. J. ; Muszka, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-5690afa5d29b9d66e85da202c96605f4c0c736c6bcd98d913ff5c56250b49a3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Complexity</topic><topic>Crystal defects</topic><topic>Deformation</topic><topic>Dislocation density</topic><topic>Electric arc melting</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Mechanical properties</topic><topic>Nanoindentation</topic><topic>Nucleation</topic><topic>Physics</topic><topic>Plastic deformation</topic><topic>Plastic properties</topic><topic>Production methods</topic><topic>Room temperature</topic><topic>Shear strain</topic><topic>Solid solutions</topic><topic>Stacking faults</topic><topic>Tetrahedra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Domínguez-Gutiérrez, F. J.</creatorcontrib><creatorcontrib>Olejarz, A.</creatorcontrib><creatorcontrib>Landeiro Dos Reis, M.</creatorcontrib><creatorcontrib>Wyszkowska, E.</creatorcontrib><creatorcontrib>Kalita, D.</creatorcontrib><creatorcontrib>Huo, W. Y.</creatorcontrib><creatorcontrib>Jozwik, I.</creatorcontrib><creatorcontrib>Kurpaska, L.</creatorcontrib><creatorcontrib>Papanikolaou, S.</creatorcontrib><creatorcontrib>Alava, M. J.</creatorcontrib><creatorcontrib>Muszka, K.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Domínguez-Gutiérrez, F. J.</au><au>Olejarz, A.</au><au>Landeiro Dos Reis, M.</au><au>Wyszkowska, E.</au><au>Kalita, D.</au><au>Huo, W. Y.</au><au>Jozwik, I.</au><au>Kurpaska, L.</au><au>Papanikolaou, S.</au><au>Alava, M. J.</au><au>Muszka, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomistic-level analysis of nanoindentation-induced plasticity in arc-melted NiFeCrCo alloys: The role of stacking faults</atitle><jtitle>Journal of applied physics</jtitle><date>2024-05-14</date><risdate>2024</risdate><volume>135</volume><issue>18</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Concentrated solid solution alloys (CSAs) have attracted attention for their promising properties; however, current manufacturing methods face challenges in complexity, high costs, and limited scalability, raising concerns about industrial viability. The prevalent technique, arc melting, yields high-purity samples with complex shapes. In this study, we explore nanoindentation tests at room temperature where arc-melted samples exhibit larger grain sizes, diminishing the effects of grain boundaries on the results. Motivated by these findings, our investigation focuses on the atomistic-level exploration of plasticity mechanisms, specifically dislocation nucleation and propagation during nanoindentation tests. The intricate chemistry of NiFeCrCo CSA influences pile-ups and slip traces, aiming to elucidate plastic deformation by considering both pristine and pre-existing stacking fault tetrahedra. Our analysis scrutinizes dynamic deformation processes, defect nucleation, and evolution, complemented by stress–strain and dislocation densities–strain curves illustrating the hardening mechanism of defective materials. Additionally, we examine surface morphology and plastic deformation through atomic shear strain and displacement mappings. This integrated approach provides insights into the complex interplay between the material structure and mechanical behavior, paving the way for an enhanced understanding and potential advancements in CSA applications.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0200717</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8449-7795</orcidid><orcidid>https://orcid.org/0000-0002-7031-9303</orcidid><orcidid>https://orcid.org/0000-0002-7670-8342</orcidid><orcidid>https://orcid.org/0000-0001-8297-9045</orcidid><orcidid>https://orcid.org/0000-0001-9249-5079</orcidid><orcidid>https://orcid.org/0000-0001-5239-1275</orcidid><orcidid>https://orcid.org/0000-0003-1135-6873</orcidid><orcidid>https://orcid.org/0000-0001-5750-2691</orcidid><orcidid>https://orcid.org/0000-0002-1429-0083</orcidid><orcidid>https://orcid.org/0000-0002-6054-4929</orcidid><orcidid>https://orcid.org/0000-0002-2970-4090</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2024-05, Vol.135 (18) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0200717 |
source | Alma/SFX Local Collection |
subjects | Complexity Crystal defects Deformation Dislocation density Electric arc melting Grain boundaries Grain size Mechanical properties Nanoindentation Nucleation Physics Plastic deformation Plastic properties Production methods Room temperature Shear strain Solid solutions Stacking faults Tetrahedra |
title | Atomistic-level analysis of nanoindentation-induced plasticity in arc-melted NiFeCrCo alloys: The role of stacking faults |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A39%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomistic-level%20analysis%20of%20nanoindentation-induced%20plasticity%20in%20arc-melted%20NiFeCrCo%20alloys:%20The%20role%20of%20stacking%20faults&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Dom%C3%ADnguez-Guti%C3%A9rrez,%20F.%20J.&rft.date=2024-05-14&rft.volume=135&rft.issue=18&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0200717&rft_dat=%3Cproquest_scita%3E3052208432%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3052208432&rft_id=info:pmid/&rfr_iscdi=true |