Stability mapping of bipartite tight-binding graphs with losses and gain: P T P T-symmetry and beyond

We consider bipartite tight-binding graphs composed by N nodes split into two sets of equal size: one set containing nodes with on-site loss, the other set having nodes with on-site gain. The nodes are connected randomly with probability p. Specifically, we measure the connectivity between the two s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2024-05, Vol.34 (5)
Hauptverfasser: Martínez-Martínez, C. T., Moreno-Rodriguez, L. A., Méndez-Bermúdez, J. A., Benisty, Henri
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Chaos (Woodbury, N.Y.)
container_volume 34
creator Martínez-Martínez, C. T.
Moreno-Rodriguez, L. A.
Méndez-Bermúdez, J. A.
Benisty, Henri
description We consider bipartite tight-binding graphs composed by N nodes split into two sets of equal size: one set containing nodes with on-site loss, the other set having nodes with on-site gain. The nodes are connected randomly with probability p. Specifically, we measure the connectivity between the two sets with the parameter α, which is the ratio of current adjacent pairs over the total number of possible adjacent pairs between the sets. For general undirected-graph setups, the non-Hermitian Hamiltonian H ( γ , α , N ) of this model presents pseudo-Hermiticity, where γ is the loss/gain strength. However, we show that for a given graph setup H ( γ , α , N ) becomes P T-symmetric. In both scenarios (pseudo-Hermiticity and P T-symmetric), depending on the parameter combination, the spectra of H ( γ , α , N ) can be real even when it is non-Hermitian. Then we demonstrate, for both setups, that there is a well-defined sector of the γ α-plane (which grows with N) where the spectrum of H ( γ , α , N ) is predominantly real.
doi_str_mv 10.1063/5.0199771
format Article
fullrecord <record><control><sourceid>scitation</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0199771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_5_0199771</sourcerecordid><originalsourceid>FETCH-scitation_primary_10_1063_5_01997713</originalsourceid><addsrcrecordid>eNqVj8FKxDAURYM44Oi48A_eWsj4MjXTqVtRXA44-_BqM-2TNg3JA8nfS2V-wMXlXjh3c5R6MLg1uK-e7BZN09S1uVJrg4dG1_vD7nrZ9lkbi3ijbnP-RkSzq-xa-U-hlkeWAhPFyKGH-QwtR0rC4kG4H0S3HLoF9YnikOGHZYBxztlnoNBBTxxe4AinJTqXafKSyh9qfZlDt1GrM43Z31_6Tj2-v51eP3T-YiHhObiYeKJUnEG3iDjrLiLVv86_se9OVQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stability mapping of bipartite tight-binding graphs with losses and gain: P T P T-symmetry and beyond</title><source>AIP Journals Complete</source><creator>Martínez-Martínez, C. T. ; Moreno-Rodriguez, L. A. ; Méndez-Bermúdez, J. A. ; Benisty, Henri</creator><creatorcontrib>Martínez-Martínez, C. T. ; Moreno-Rodriguez, L. A. ; Méndez-Bermúdez, J. A. ; Benisty, Henri</creatorcontrib><description>We consider bipartite tight-binding graphs composed by N nodes split into two sets of equal size: one set containing nodes with on-site loss, the other set having nodes with on-site gain. The nodes are connected randomly with probability p. Specifically, we measure the connectivity between the two sets with the parameter α, which is the ratio of current adjacent pairs over the total number of possible adjacent pairs between the sets. For general undirected-graph setups, the non-Hermitian Hamiltonian H ( γ , α , N ) of this model presents pseudo-Hermiticity, where γ is the loss/gain strength. However, we show that for a given graph setup H ( γ , α , N ) becomes P T-symmetric. In both scenarios (pseudo-Hermiticity and P T-symmetric), depending on the parameter combination, the spectra of H ( γ , α , N ) can be real even when it is non-Hermitian. Then we demonstrate, for both setups, that there is a well-defined sector of the γ α-plane (which grows with N) where the spectrum of H ( γ , α , N ) is predominantly real.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/5.0199771</identifier><identifier>CODEN: CHAOEH</identifier><ispartof>Chaos (Woodbury, N.Y.), 2024-05, Vol.34 (5)</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7428-7196 ; 0000-0002-5020-5843 ; 0000-0002-1748-9901 ; 0000-0001-8610-5329</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Martínez-Martínez, C. T.</creatorcontrib><creatorcontrib>Moreno-Rodriguez, L. A.</creatorcontrib><creatorcontrib>Méndez-Bermúdez, J. A.</creatorcontrib><creatorcontrib>Benisty, Henri</creatorcontrib><title>Stability mapping of bipartite tight-binding graphs with losses and gain: P T P T-symmetry and beyond</title><title>Chaos (Woodbury, N.Y.)</title><description>We consider bipartite tight-binding graphs composed by N nodes split into two sets of equal size: one set containing nodes with on-site loss, the other set having nodes with on-site gain. The nodes are connected randomly with probability p. Specifically, we measure the connectivity between the two sets with the parameter α, which is the ratio of current adjacent pairs over the total number of possible adjacent pairs between the sets. For general undirected-graph setups, the non-Hermitian Hamiltonian H ( γ , α , N ) of this model presents pseudo-Hermiticity, where γ is the loss/gain strength. However, we show that for a given graph setup H ( γ , α , N ) becomes P T-symmetric. In both scenarios (pseudo-Hermiticity and P T-symmetric), depending on the parameter combination, the spectra of H ( γ , α , N ) can be real even when it is non-Hermitian. Then we demonstrate, for both setups, that there is a well-defined sector of the γ α-plane (which grows with N) where the spectrum of H ( γ , α , N ) is predominantly real.</description><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqVj8FKxDAURYM44Oi48A_eWsj4MjXTqVtRXA44-_BqM-2TNg3JA8nfS2V-wMXlXjh3c5R6MLg1uK-e7BZN09S1uVJrg4dG1_vD7nrZ9lkbi3ijbnP-RkSzq-xa-U-hlkeWAhPFyKGH-QwtR0rC4kG4H0S3HLoF9YnikOGHZYBxztlnoNBBTxxe4AinJTqXafKSyh9qfZlDt1GrM43Z31_6Tj2-v51eP3T-YiHhObiYeKJUnEG3iDjrLiLVv86_se9OVQ</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Martínez-Martínez, C. T.</creator><creator>Moreno-Rodriguez, L. A.</creator><creator>Méndez-Bermúdez, J. A.</creator><creator>Benisty, Henri</creator><scope/><orcidid>https://orcid.org/0000-0001-7428-7196</orcidid><orcidid>https://orcid.org/0000-0002-5020-5843</orcidid><orcidid>https://orcid.org/0000-0002-1748-9901</orcidid><orcidid>https://orcid.org/0000-0001-8610-5329</orcidid></search><sort><creationdate>202405</creationdate><title>Stability mapping of bipartite tight-binding graphs with losses and gain: P T P T-symmetry and beyond</title><author>Martínez-Martínez, C. T. ; Moreno-Rodriguez, L. A. ; Méndez-Bermúdez, J. A. ; Benisty, Henri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-scitation_primary_10_1063_5_01997713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martínez-Martínez, C. T.</creatorcontrib><creatorcontrib>Moreno-Rodriguez, L. A.</creatorcontrib><creatorcontrib>Méndez-Bermúdez, J. A.</creatorcontrib><creatorcontrib>Benisty, Henri</creatorcontrib><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martínez-Martínez, C. T.</au><au>Moreno-Rodriguez, L. A.</au><au>Méndez-Bermúdez, J. A.</au><au>Benisty, Henri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability mapping of bipartite tight-binding graphs with losses and gain: P T P T-symmetry and beyond</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><date>2024-05</date><risdate>2024</risdate><volume>34</volume><issue>5</issue><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>We consider bipartite tight-binding graphs composed by N nodes split into two sets of equal size: one set containing nodes with on-site loss, the other set having nodes with on-site gain. The nodes are connected randomly with probability p. Specifically, we measure the connectivity between the two sets with the parameter α, which is the ratio of current adjacent pairs over the total number of possible adjacent pairs between the sets. For general undirected-graph setups, the non-Hermitian Hamiltonian H ( γ , α , N ) of this model presents pseudo-Hermiticity, where γ is the loss/gain strength. However, we show that for a given graph setup H ( γ , α , N ) becomes P T-symmetric. In both scenarios (pseudo-Hermiticity and P T-symmetric), depending on the parameter combination, the spectra of H ( γ , α , N ) can be real even when it is non-Hermitian. Then we demonstrate, for both setups, that there is a well-defined sector of the γ α-plane (which grows with N) where the spectrum of H ( γ , α , N ) is predominantly real.</abstract><doi>10.1063/5.0199771</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7428-7196</orcidid><orcidid>https://orcid.org/0000-0002-5020-5843</orcidid><orcidid>https://orcid.org/0000-0002-1748-9901</orcidid><orcidid>https://orcid.org/0000-0001-8610-5329</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2024-05, Vol.34 (5)
issn 1054-1500
1089-7682
language
recordid cdi_scitation_primary_10_1063_5_0199771
source AIP Journals Complete
title Stability mapping of bipartite tight-binding graphs with losses and gain: P T P T-symmetry and beyond
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A00%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20mapping%20of%20bipartite%20tight-binding%20graphs%20with%20losses%20and%20gain:%20P%20T%20P%20T-symmetry%20and%20beyond&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Mart%C3%ADnez-Mart%C3%ADnez,%20C.%20T.&rft.date=2024-05&rft.volume=34&rft.issue=5&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/5.0199771&rft_dat=%3Cscitation%3Escitation_primary_10_1063_5_0199771%3C/scitation%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true