Deep learning based approach for prediction of yoga posture using yoga asana images
One of computer science’s fastest-growing and most popular subfields is artificial intelligence (AI). The branch or subset of AI known as machine learning uses data and algorithms to provide systems the capacity to gradually learn and advance automatically. A part of machine learning is called deep...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2942 |
creator | Sharma, Hitesh Kumar Choudhury, Tanupriya Mahapatra, Satyasundara Kumar, G. A. E. Satish Maganti, Sushanth Babu |
description | One of computer science’s fastest-growing and most popular subfields is artificial intelligence (AI). The branch or subset of AI known as machine learning uses data and algorithms to provide systems the capacity to gradually learn and advance automatically. A part of machine learning is called deep learning. It employs those algorithms that drew their inspiration from the architecture of the human brain. Most of us have been working from home and doing yoga for our health and well-being ever since this pandemic hit. However, in doing so, we also sense the need for a teacher who can assess us. As a result, this research lays the groundwork for creating a system that can evaluate human yoga poses using deep learning and convolutional neural networks. |
doi_str_mv | 10.1063/5.0197215 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0197215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933183936</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1685-ad124d39ebca726177e52c1ab202e708e98467038d85b318024aefc7ac69c4b93</originalsourceid><addsrcrecordid>eNotUE1Lw0AUXETBWj34Dxa8Can7kf06Sv2EggcVvIWXzUtNqdl1Nzn035vanh4MM_NmhpBrzhacaXmnFow7I7g6ITOuFC-M5vqUzBhzZSFK-XVOLnLeMCacMXZG3h8QI90ipL7r17SGjA2FGFMA_03bkGhM2HR-6EJPQ0t3YQ00hjyMCemY95p_CDL0QLsfWGO-JGctbDNeHe-cfD49fixfitXb8-vyflVErq0qoOGibKTD2oMRmhuDSngOtWACDbPobKkNk7axqpbcMlECtt6A186XtZNzcnPwndL-jpiHahPG1E8vK-HkpJBO6ol1e2Bl3w2w71HFNAVNu4qzaj9aparjaPIPYJtd2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2933183936</pqid></control><display><type>conference_proceeding</type><title>Deep learning based approach for prediction of yoga posture using yoga asana images</title><source>AIP Journals Complete</source><creator>Sharma, Hitesh Kumar ; Choudhury, Tanupriya ; Mahapatra, Satyasundara ; Kumar, G. A. E. Satish ; Maganti, Sushanth Babu</creator><contributor>Jabbar, M. A. ; Ravindra, J. V. R. ; Kumar, G.A.E. Satish</contributor><creatorcontrib>Sharma, Hitesh Kumar ; Choudhury, Tanupriya ; Mahapatra, Satyasundara ; Kumar, G. A. E. Satish ; Maganti, Sushanth Babu ; Jabbar, M. A. ; Ravindra, J. V. R. ; Kumar, G.A.E. Satish</creatorcontrib><description>One of computer science’s fastest-growing and most popular subfields is artificial intelligence (AI). The branch or subset of AI known as machine learning uses data and algorithms to provide systems the capacity to gradually learn and advance automatically. A part of machine learning is called deep learning. It employs those algorithms that drew their inspiration from the architecture of the human brain. Most of us have been working from home and doing yoga for our health and well-being ever since this pandemic hit. However, in doing so, we also sense the need for a teacher who can assess us. As a result, this research lays the groundwork for creating a system that can evaluate human yoga poses using deep learning and convolutional neural networks.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0197215</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Artificial intelligence ; Artificial neural networks ; Deep learning ; Machine learning</subject><ispartof>AIP conference proceedings, 2024, Vol.2942 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0197215$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23911,23912,25120,27903,27904,76130</link.rule.ids></links><search><contributor>Jabbar, M. A.</contributor><contributor>Ravindra, J. V. R.</contributor><contributor>Kumar, G.A.E. Satish</contributor><creatorcontrib>Sharma, Hitesh Kumar</creatorcontrib><creatorcontrib>Choudhury, Tanupriya</creatorcontrib><creatorcontrib>Mahapatra, Satyasundara</creatorcontrib><creatorcontrib>Kumar, G. A. E. Satish</creatorcontrib><creatorcontrib>Maganti, Sushanth Babu</creatorcontrib><title>Deep learning based approach for prediction of yoga posture using yoga asana images</title><title>AIP conference proceedings</title><description>One of computer science’s fastest-growing and most popular subfields is artificial intelligence (AI). The branch or subset of AI known as machine learning uses data and algorithms to provide systems the capacity to gradually learn and advance automatically. A part of machine learning is called deep learning. It employs those algorithms that drew their inspiration from the architecture of the human brain. Most of us have been working from home and doing yoga for our health and well-being ever since this pandemic hit. However, in doing so, we also sense the need for a teacher who can assess us. As a result, this research lays the groundwork for creating a system that can evaluate human yoga poses using deep learning and convolutional neural networks.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Deep learning</subject><subject>Machine learning</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotUE1Lw0AUXETBWj34Dxa8Can7kf06Sv2EggcVvIWXzUtNqdl1Nzn035vanh4MM_NmhpBrzhacaXmnFow7I7g6ITOuFC-M5vqUzBhzZSFK-XVOLnLeMCacMXZG3h8QI90ipL7r17SGjA2FGFMA_03bkGhM2HR-6EJPQ0t3YQ00hjyMCemY95p_CDL0QLsfWGO-JGctbDNeHe-cfD49fixfitXb8-vyflVErq0qoOGibKTD2oMRmhuDSngOtWACDbPobKkNk7axqpbcMlECtt6A186XtZNzcnPwndL-jpiHahPG1E8vK-HkpJBO6ol1e2Bl3w2w71HFNAVNu4qzaj9aparjaPIPYJtd2A</recordid><startdate>20240229</startdate><enddate>20240229</enddate><creator>Sharma, Hitesh Kumar</creator><creator>Choudhury, Tanupriya</creator><creator>Mahapatra, Satyasundara</creator><creator>Kumar, G. A. E. Satish</creator><creator>Maganti, Sushanth Babu</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240229</creationdate><title>Deep learning based approach for prediction of yoga posture using yoga asana images</title><author>Sharma, Hitesh Kumar ; Choudhury, Tanupriya ; Mahapatra, Satyasundara ; Kumar, G. A. E. Satish ; Maganti, Sushanth Babu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1685-ad124d39ebca726177e52c1ab202e708e98467038d85b318024aefc7ac69c4b93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Deep learning</topic><topic>Machine learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Hitesh Kumar</creatorcontrib><creatorcontrib>Choudhury, Tanupriya</creatorcontrib><creatorcontrib>Mahapatra, Satyasundara</creatorcontrib><creatorcontrib>Kumar, G. A. E. Satish</creatorcontrib><creatorcontrib>Maganti, Sushanth Babu</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Hitesh Kumar</au><au>Choudhury, Tanupriya</au><au>Mahapatra, Satyasundara</au><au>Kumar, G. A. E. Satish</au><au>Maganti, Sushanth Babu</au><au>Jabbar, M. A.</au><au>Ravindra, J. V. R.</au><au>Kumar, G.A.E. Satish</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Deep learning based approach for prediction of yoga posture using yoga asana images</atitle><btitle>AIP conference proceedings</btitle><date>2024-02-29</date><risdate>2024</risdate><volume>2942</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>One of computer science’s fastest-growing and most popular subfields is artificial intelligence (AI). The branch or subset of AI known as machine learning uses data and algorithms to provide systems the capacity to gradually learn and advance automatically. A part of machine learning is called deep learning. It employs those algorithms that drew their inspiration from the architecture of the human brain. Most of us have been working from home and doing yoga for our health and well-being ever since this pandemic hit. However, in doing so, we also sense the need for a teacher who can assess us. As a result, this research lays the groundwork for creating a system that can evaluate human yoga poses using deep learning and convolutional neural networks.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0197215</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2024, Vol.2942 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0197215 |
source | AIP Journals Complete |
subjects | Algorithms Artificial intelligence Artificial neural networks Deep learning Machine learning |
title | Deep learning based approach for prediction of yoga posture using yoga asana images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A19%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Deep%20learning%20based%20approach%20for%20prediction%20of%20yoga%20posture%20using%20yoga%20asana%20images&rft.btitle=AIP%20conference%20proceedings&rft.au=Sharma,%20Hitesh%20Kumar&rft.date=2024-02-29&rft.volume=2942&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0197215&rft_dat=%3Cproquest_scita%3E2933183936%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933183936&rft_id=info:pmid/&rfr_iscdi=true |