The stability analysis of In–Ga–ZnO thin film transistors with polyimide substrates based on Maxwell–Wagner effect

Flexible organic light-emitting diode display devices fabricated on polyimide (PI) substrates have more obvious residual image problems due to the abnormal threshold-voltage (Vth) shifts of a thin film transistor (TFT). In this paper, the Vth shift of TFT fabricated on a PI substrate was analyzed. W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2024-04, Vol.124 (16)
Hauptverfasser: Bao, Zongchi, Liu, Bin, Liu, Xianwen, Zhang, Shuo, Weng, Le, Sun, Haoran, Zhang, Xi, Yao, Qi, Yuan, Guangcai, Guo, Jian, Ning, Ce, Shi, Dawei, Wang, Feng, Yu, Zhinong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page
container_title Applied physics letters
container_volume 124
creator Bao, Zongchi
Liu, Bin
Liu, Xianwen
Zhang, Shuo
Weng, Le
Sun, Haoran
Zhang, Xi
Yao, Qi
Yuan, Guangcai
Guo, Jian
Ning, Ce
Shi, Dawei
Wang, Feng
Yu, Zhinong
description Flexible organic light-emitting diode display devices fabricated on polyimide (PI) substrates have more obvious residual image problems due to the abnormal threshold-voltage (Vth) shifts of a thin film transistor (TFT). In this paper, the Vth shift of TFT fabricated on a PI substrate was analyzed. We explained the worse bias stability and worse recovery of TFT with a PI substrate compared with TFT with a glass substrate, by an interlayer charging effect (Maxwell–Wagner effect) and a technology computer-aided design (Silvaco). When bias stress was applied for a long time, the interface between the PI substrate and the buffer layer will have a charging effect under the action of an electric field, and the charging charge will react on the channel and hinder the formation of the channel. We found that there are differences in the scale of charge under different voltage stress conditions, and this will result in different Vth shifts of driving TFTs for displays units.
doi_str_mv 10.1063/5.0196413
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0196413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3038923443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-71cb81a628704441163a818d5ff367756f585242027dcc0210e54c1067da3ece3</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKsL3yDgSmFqfifTpRSthUo3FcHNkGYSmzJNapLSzs538A19EiPt2s29XL7DB_cAcI3RAKOS3vMBwsOSYXoCehgJUVCMq1PQQwjRohxyfA4uYlzlkxNKe2A_X2oYk1zY1qYOSifbLtoIvYET9_P1PZZ5vLsZTEvroLHtGqYgXUaSDxHubFrCjW87u7ZNLtouYo6TjnAho26gd_BF7ne6bXPNm_xwOkBtjFbpEpwZ2UZ9ddx98Pr0OB89F9PZeDJ6mBaKcJIKgdWiwrIklUCMMYxLKitcNdwYWgrBS8MrThhBRDRKIYKR5kxlFaKRVCtN--Dm0LsJ_nOrY6pXfhvym7GmiFZDQhmjmbo9UCr4GIM29SbYtQxdjVH9J7bm9VFsZu8ObFQ2yWS9-wf-BddjesM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3038923443</pqid></control><display><type>article</type><title>The stability analysis of In–Ga–ZnO thin film transistors with polyimide substrates based on Maxwell–Wagner effect</title><source>AIP Journals Complete</source><creator>Bao, Zongchi ; Liu, Bin ; Liu, Xianwen ; Zhang, Shuo ; Weng, Le ; Sun, Haoran ; Zhang, Xi ; Yao, Qi ; Yuan, Guangcai ; Guo, Jian ; Ning, Ce ; Shi, Dawei ; Wang, Feng ; Yu, Zhinong</creator><creatorcontrib>Bao, Zongchi ; Liu, Bin ; Liu, Xianwen ; Zhang, Shuo ; Weng, Le ; Sun, Haoran ; Zhang, Xi ; Yao, Qi ; Yuan, Guangcai ; Guo, Jian ; Ning, Ce ; Shi, Dawei ; Wang, Feng ; Yu, Zhinong</creatorcontrib><description>Flexible organic light-emitting diode display devices fabricated on polyimide (PI) substrates have more obvious residual image problems due to the abnormal threshold-voltage (Vth) shifts of a thin film transistor (TFT). In this paper, the Vth shift of TFT fabricated on a PI substrate was analyzed. We explained the worse bias stability and worse recovery of TFT with a PI substrate compared with TFT with a glass substrate, by an interlayer charging effect (Maxwell–Wagner effect) and a technology computer-aided design (Silvaco). When bias stress was applied for a long time, the interface between the PI substrate and the buffer layer will have a charging effect under the action of an electric field, and the charging charge will react on the channel and hinder the formation of the channel. We found that there are differences in the scale of charge under different voltage stress conditions, and this will result in different Vth shifts of driving TFTs for displays units.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0196413</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Bias ; Buffer layers ; CAD ; Charging ; Computer aided design ; Display devices ; Electric fields ; Electric potential ; Glass substrates ; Interlayers ; Organic light emitting diodes ; Semiconductor devices ; Stability analysis ; Thin film transistors ; Thin films ; Voltage ; Zinc oxide</subject><ispartof>Applied physics letters, 2024-04, Vol.124 (16)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-71cb81a628704441163a818d5ff367756f585242027dcc0210e54c1067da3ece3</cites><orcidid>0009-0004-6258-2947 ; 0000-0002-4937-3858 ; 0000-0001-7626-3112 ; 0000-0001-9794-0047 ; 0000-0002-9421-6958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0196413$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,781,785,795,4513,27929,27930,76389</link.rule.ids></links><search><creatorcontrib>Bao, Zongchi</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Liu, Xianwen</creatorcontrib><creatorcontrib>Zhang, Shuo</creatorcontrib><creatorcontrib>Weng, Le</creatorcontrib><creatorcontrib>Sun, Haoran</creatorcontrib><creatorcontrib>Zhang, Xi</creatorcontrib><creatorcontrib>Yao, Qi</creatorcontrib><creatorcontrib>Yuan, Guangcai</creatorcontrib><creatorcontrib>Guo, Jian</creatorcontrib><creatorcontrib>Ning, Ce</creatorcontrib><creatorcontrib>Shi, Dawei</creatorcontrib><creatorcontrib>Wang, Feng</creatorcontrib><creatorcontrib>Yu, Zhinong</creatorcontrib><title>The stability analysis of In–Ga–ZnO thin film transistors with polyimide substrates based on Maxwell–Wagner effect</title><title>Applied physics letters</title><description>Flexible organic light-emitting diode display devices fabricated on polyimide (PI) substrates have more obvious residual image problems due to the abnormal threshold-voltage (Vth) shifts of a thin film transistor (TFT). In this paper, the Vth shift of TFT fabricated on a PI substrate was analyzed. We explained the worse bias stability and worse recovery of TFT with a PI substrate compared with TFT with a glass substrate, by an interlayer charging effect (Maxwell–Wagner effect) and a technology computer-aided design (Silvaco). When bias stress was applied for a long time, the interface between the PI substrate and the buffer layer will have a charging effect under the action of an electric field, and the charging charge will react on the channel and hinder the formation of the channel. We found that there are differences in the scale of charge under different voltage stress conditions, and this will result in different Vth shifts of driving TFTs for displays units.</description><subject>Bias</subject><subject>Buffer layers</subject><subject>CAD</subject><subject>Charging</subject><subject>Computer aided design</subject><subject>Display devices</subject><subject>Electric fields</subject><subject>Electric potential</subject><subject>Glass substrates</subject><subject>Interlayers</subject><subject>Organic light emitting diodes</subject><subject>Semiconductor devices</subject><subject>Stability analysis</subject><subject>Thin film transistors</subject><subject>Thin films</subject><subject>Voltage</subject><subject>Zinc oxide</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEURoMoWKsL3yDgSmFqfifTpRSthUo3FcHNkGYSmzJNapLSzs538A19EiPt2s29XL7DB_cAcI3RAKOS3vMBwsOSYXoCehgJUVCMq1PQQwjRohxyfA4uYlzlkxNKe2A_X2oYk1zY1qYOSifbLtoIvYET9_P1PZZ5vLsZTEvroLHtGqYgXUaSDxHubFrCjW87u7ZNLtouYo6TjnAho26gd_BF7ne6bXPNm_xwOkBtjFbpEpwZ2UZ9ddx98Pr0OB89F9PZeDJ6mBaKcJIKgdWiwrIklUCMMYxLKitcNdwYWgrBS8MrThhBRDRKIYKR5kxlFaKRVCtN--Dm0LsJ_nOrY6pXfhvym7GmiFZDQhmjmbo9UCr4GIM29SbYtQxdjVH9J7bm9VFsZu8ObFQ2yWS9-wf-BddjesM</recordid><startdate>20240415</startdate><enddate>20240415</enddate><creator>Bao, Zongchi</creator><creator>Liu, Bin</creator><creator>Liu, Xianwen</creator><creator>Zhang, Shuo</creator><creator>Weng, Le</creator><creator>Sun, Haoran</creator><creator>Zhang, Xi</creator><creator>Yao, Qi</creator><creator>Yuan, Guangcai</creator><creator>Guo, Jian</creator><creator>Ning, Ce</creator><creator>Shi, Dawei</creator><creator>Wang, Feng</creator><creator>Yu, Zhinong</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0004-6258-2947</orcidid><orcidid>https://orcid.org/0000-0002-4937-3858</orcidid><orcidid>https://orcid.org/0000-0001-7626-3112</orcidid><orcidid>https://orcid.org/0000-0001-9794-0047</orcidid><orcidid>https://orcid.org/0000-0002-9421-6958</orcidid></search><sort><creationdate>20240415</creationdate><title>The stability analysis of In–Ga–ZnO thin film transistors with polyimide substrates based on Maxwell–Wagner effect</title><author>Bao, Zongchi ; Liu, Bin ; Liu, Xianwen ; Zhang, Shuo ; Weng, Le ; Sun, Haoran ; Zhang, Xi ; Yao, Qi ; Yuan, Guangcai ; Guo, Jian ; Ning, Ce ; Shi, Dawei ; Wang, Feng ; Yu, Zhinong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-71cb81a628704441163a818d5ff367756f585242027dcc0210e54c1067da3ece3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bias</topic><topic>Buffer layers</topic><topic>CAD</topic><topic>Charging</topic><topic>Computer aided design</topic><topic>Display devices</topic><topic>Electric fields</topic><topic>Electric potential</topic><topic>Glass substrates</topic><topic>Interlayers</topic><topic>Organic light emitting diodes</topic><topic>Semiconductor devices</topic><topic>Stability analysis</topic><topic>Thin film transistors</topic><topic>Thin films</topic><topic>Voltage</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Zongchi</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Liu, Xianwen</creatorcontrib><creatorcontrib>Zhang, Shuo</creatorcontrib><creatorcontrib>Weng, Le</creatorcontrib><creatorcontrib>Sun, Haoran</creatorcontrib><creatorcontrib>Zhang, Xi</creatorcontrib><creatorcontrib>Yao, Qi</creatorcontrib><creatorcontrib>Yuan, Guangcai</creatorcontrib><creatorcontrib>Guo, Jian</creatorcontrib><creatorcontrib>Ning, Ce</creatorcontrib><creatorcontrib>Shi, Dawei</creatorcontrib><creatorcontrib>Wang, Feng</creatorcontrib><creatorcontrib>Yu, Zhinong</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Zongchi</au><au>Liu, Bin</au><au>Liu, Xianwen</au><au>Zhang, Shuo</au><au>Weng, Le</au><au>Sun, Haoran</au><au>Zhang, Xi</au><au>Yao, Qi</au><au>Yuan, Guangcai</au><au>Guo, Jian</au><au>Ning, Ce</au><au>Shi, Dawei</au><au>Wang, Feng</au><au>Yu, Zhinong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The stability analysis of In–Ga–ZnO thin film transistors with polyimide substrates based on Maxwell–Wagner effect</atitle><jtitle>Applied physics letters</jtitle><date>2024-04-15</date><risdate>2024</risdate><volume>124</volume><issue>16</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Flexible organic light-emitting diode display devices fabricated on polyimide (PI) substrates have more obvious residual image problems due to the abnormal threshold-voltage (Vth) shifts of a thin film transistor (TFT). In this paper, the Vth shift of TFT fabricated on a PI substrate was analyzed. We explained the worse bias stability and worse recovery of TFT with a PI substrate compared with TFT with a glass substrate, by an interlayer charging effect (Maxwell–Wagner effect) and a technology computer-aided design (Silvaco). When bias stress was applied for a long time, the interface between the PI substrate and the buffer layer will have a charging effect under the action of an electric field, and the charging charge will react on the channel and hinder the formation of the channel. We found that there are differences in the scale of charge under different voltage stress conditions, and this will result in different Vth shifts of driving TFTs for displays units.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0196413</doi><tpages>5</tpages><orcidid>https://orcid.org/0009-0004-6258-2947</orcidid><orcidid>https://orcid.org/0000-0002-4937-3858</orcidid><orcidid>https://orcid.org/0000-0001-7626-3112</orcidid><orcidid>https://orcid.org/0000-0001-9794-0047</orcidid><orcidid>https://orcid.org/0000-0002-9421-6958</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2024-04, Vol.124 (16)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_5_0196413
source AIP Journals Complete
subjects Bias
Buffer layers
CAD
Charging
Computer aided design
Display devices
Electric fields
Electric potential
Glass substrates
Interlayers
Organic light emitting diodes
Semiconductor devices
Stability analysis
Thin film transistors
Thin films
Voltage
Zinc oxide
title The stability analysis of In–Ga–ZnO thin film transistors with polyimide substrates based on Maxwell–Wagner effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T12%3A50%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20stability%20analysis%20of%20In%E2%80%93Ga%E2%80%93ZnO%20thin%20film%20transistors%20with%20polyimide%20substrates%20based%20on%20Maxwell%E2%80%93Wagner%20effect&rft.jtitle=Applied%20physics%20letters&rft.au=Bao,%20Zongchi&rft.date=2024-04-15&rft.volume=124&rft.issue=16&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0196413&rft_dat=%3Cproquest_scita%3E3038923443%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3038923443&rft_id=info:pmid/&rfr_iscdi=true