Chaotic time series forecast based on weighted state transition network

There have been many attempts to improve how well chaotic time-series can be used to make predictions. Predicting a chaotic time series beyond the short time limit is extremely difficult as chaotic trajectories diverge exponentially. Various approaches, including machine learning techniques, have be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Reshmi, L. B., Mallika, M. C., Vijesh, V., Kumar, K. Satheesh
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3037
creator Reshmi, L. B.
Mallika, M. C.
Vijesh, V.
Kumar, K. Satheesh
description There have been many attempts to improve how well chaotic time-series can be used to make predictions. Predicting a chaotic time series beyond the short time limit is extremely difficult as chaotic trajectories diverge exponentially. Various approaches, including machine learning techniques, have been attempted in the literature to attain better prediction accuracy. A complex network has recently been suggested as a way to look at how a certain time series changes over time. Here, we propose a technique for forecasting time series based on an induced weighted state transition network. We demonstrate that the suggested approach can successfully predict chaotic time series up to a reasonable time limit. The proposed method is simple and computationally efficient.
doi_str_mv 10.1063/5.0196080
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0196080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3030889247</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1680-1944609fdbfe640a1997de4549ea729a28b9cbe2c9be7da823bd1c4b030e7ab93</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMoWKsL_0HAnTD15jF5LKVoFQpuFNwNycwdm2pnapJS_PeNtKt74H6ccziE3DKYMVDioZ4BswoMnJEJq2tWacXUOZkAWFlxKT4vyVVKawButTYTspiv3JhDS3PYIE0YAybajxFblzL1LmFHx4HuMXytctEpu4w0RzekkEP5DJj3Y_y-Jhe9-0l4c7pT8vH89D5_qZZvi9f547LaMmWgYlZKBbbvfI9KgmPW6g5lLS06za3jxtvWI2-tR905w4XvWCs9CEDtvBVTcnf03cbxd4cpN-txF4cS2YgCGWO51IW6P1KpDaVw6dlsY9i4-NcwaP6HaurmNJQ4APMDWqI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3030889247</pqid></control><display><type>conference_proceeding</type><title>Chaotic time series forecast based on weighted state transition network</title><source>AIP Journals Complete</source><creator>Reshmi, L. B. ; Mallika, M. C. ; Vijesh, V. ; Kumar, K. Satheesh</creator><contributor>Deepanraj, B. ; Raman, L. Anantha ; Senthilkumar, N</contributor><creatorcontrib>Reshmi, L. B. ; Mallika, M. C. ; Vijesh, V. ; Kumar, K. Satheesh ; Deepanraj, B. ; Raman, L. Anantha ; Senthilkumar, N</creatorcontrib><description>There have been many attempts to improve how well chaotic time-series can be used to make predictions. Predicting a chaotic time series beyond the short time limit is extremely difficult as chaotic trajectories diverge exponentially. Various approaches, including machine learning techniques, have been attempted in the literature to attain better prediction accuracy. A complex network has recently been suggested as a way to look at how a certain time series changes over time. Here, we propose a technique for forecasting time series based on an induced weighted state transition network. We demonstrate that the suggested approach can successfully predict chaotic time series up to a reasonable time limit. The proposed method is simple and computationally efficient.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0196080</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Machine learning ; Predictions ; Time series</subject><ispartof>AIP conference proceedings, 2024, Vol.3037 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0196080$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76126</link.rule.ids></links><search><contributor>Deepanraj, B.</contributor><contributor>Raman, L. Anantha</contributor><contributor>Senthilkumar, N</contributor><creatorcontrib>Reshmi, L. B.</creatorcontrib><creatorcontrib>Mallika, M. C.</creatorcontrib><creatorcontrib>Vijesh, V.</creatorcontrib><creatorcontrib>Kumar, K. Satheesh</creatorcontrib><title>Chaotic time series forecast based on weighted state transition network</title><title>AIP conference proceedings</title><description>There have been many attempts to improve how well chaotic time-series can be used to make predictions. Predicting a chaotic time series beyond the short time limit is extremely difficult as chaotic trajectories diverge exponentially. Various approaches, including machine learning techniques, have been attempted in the literature to attain better prediction accuracy. A complex network has recently been suggested as a way to look at how a certain time series changes over time. Here, we propose a technique for forecasting time series based on an induced weighted state transition network. We demonstrate that the suggested approach can successfully predict chaotic time series up to a reasonable time limit. The proposed method is simple and computationally efficient.</description><subject>Machine learning</subject><subject>Predictions</subject><subject>Time series</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEtLAzEUhYMoWKsL_0HAnTD15jF5LKVoFQpuFNwNycwdm2pnapJS_PeNtKt74H6ccziE3DKYMVDioZ4BswoMnJEJq2tWacXUOZkAWFlxKT4vyVVKawButTYTspiv3JhDS3PYIE0YAybajxFblzL1LmFHx4HuMXytctEpu4w0RzekkEP5DJj3Y_y-Jhe9-0l4c7pT8vH89D5_qZZvi9f547LaMmWgYlZKBbbvfI9KgmPW6g5lLS06za3jxtvWI2-tR905w4XvWCs9CEDtvBVTcnf03cbxd4cpN-txF4cS2YgCGWO51IW6P1KpDaVw6dlsY9i4-NcwaP6HaurmNJQ4APMDWqI</recordid><startdate>20240402</startdate><enddate>20240402</enddate><creator>Reshmi, L. B.</creator><creator>Mallika, M. C.</creator><creator>Vijesh, V.</creator><creator>Kumar, K. Satheesh</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240402</creationdate><title>Chaotic time series forecast based on weighted state transition network</title><author>Reshmi, L. B. ; Mallika, M. C. ; Vijesh, V. ; Kumar, K. Satheesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1680-1944609fdbfe640a1997de4549ea729a28b9cbe2c9be7da823bd1c4b030e7ab93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Machine learning</topic><topic>Predictions</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reshmi, L. B.</creatorcontrib><creatorcontrib>Mallika, M. C.</creatorcontrib><creatorcontrib>Vijesh, V.</creatorcontrib><creatorcontrib>Kumar, K. Satheesh</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reshmi, L. B.</au><au>Mallika, M. C.</au><au>Vijesh, V.</au><au>Kumar, K. Satheesh</au><au>Deepanraj, B.</au><au>Raman, L. Anantha</au><au>Senthilkumar, N</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Chaotic time series forecast based on weighted state transition network</atitle><btitle>AIP conference proceedings</btitle><date>2024-04-02</date><risdate>2024</risdate><volume>3037</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>There have been many attempts to improve how well chaotic time-series can be used to make predictions. Predicting a chaotic time series beyond the short time limit is extremely difficult as chaotic trajectories diverge exponentially. Various approaches, including machine learning techniques, have been attempted in the literature to attain better prediction accuracy. A complex network has recently been suggested as a way to look at how a certain time series changes over time. Here, we propose a technique for forecasting time series based on an induced weighted state transition network. We demonstrate that the suggested approach can successfully predict chaotic time series up to a reasonable time limit. The proposed method is simple and computationally efficient.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0196080</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.3037 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0196080
source AIP Journals Complete
subjects Machine learning
Predictions
Time series
title Chaotic time series forecast based on weighted state transition network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A33%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Chaotic%20time%20series%20forecast%20based%20on%20weighted%20state%20transition%20network&rft.btitle=AIP%20conference%20proceedings&rft.au=Reshmi,%20L.%20B.&rft.date=2024-04-02&rft.volume=3037&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0196080&rft_dat=%3Cproquest_scita%3E3030889247%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3030889247&rft_id=info:pmid/&rfr_iscdi=true