Weak magnetohydrodynamic turbulence theory revisited
Two recent papers, P. H. Yoon and G. Choe, Phys. Plasmas 28, 082306 (2021) and Yoon et al., Phys. Plasmas 29, 112303 (2022), utilized in the derivation of the kinetic equation for the intensity of turbulent fluctuations the assumption that the wave spectra are isotropic, that is, the ensemble-averag...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2024-06, Vol.31 (6) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 31 |
creator | Ziebell, Luiz F. Yoon, Peter H. Choe, Gwangson |
description | Two recent papers, P. H. Yoon and G. Choe, Phys. Plasmas 28, 082306 (2021) and Yoon et al., Phys. Plasmas 29, 112303 (2022), utilized in the derivation of the kinetic equation for the intensity of turbulent fluctuations the assumption that the wave spectra are isotropic, that is, the ensemble-averaged magnetic field tensorial fluctuation intensity is given by the isotropic diagonal form,
⟨
δ
B
i
δ
B
j
⟩
k
=
⟨
δ
B
2
⟩
k
δ
i
j. However, it is more appropriate to describe the incompressible magnetohydrodynamic turbulence involving shear Alfvénic waves by modeling the turbulence spectrum as being anisotropic. That is, the tensorial fluctuation intensity should be different in diagonal elements across and along the direction of the wave vector,
⟨
δ
B
i
δ
B
j
⟩
k
=
1
2
⟨
δ
B
⊥
2
⟩
k
(
δ
i
j
−
k
i
k
j
/
k
2
)
+
⟨
δ
B
∥
2
⟩
k
(
k
i
k
j
/
k
2
). In the present paper, we thus reformulate the weak magnetohydrodynamic turbulence theory under the assumption of anisotropy and work out the form of nonlinear wave kinetic equation. |
doi_str_mv | 10.1063/5.0195994 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0195994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066955738</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-138360e45e684359e9dd3f67e5ad4186ba27571b71d8a26ba790024bc656deae3</originalsourceid><addsrcrecordid>eNotkEFLAzEUhIMoWKsH_8GCN2HrS5O8JEcpWoWCF0VvIbt5tVu7uzWbFfbfu6U9zQwM88EwdsthxgHFg5oBt8paecYmHIzNNWp5fvAackT5dcmuum4LABKVmTD5Sf4nq_13Q6ndDCG2YWh8XZVZ6mPR76gpKUsbauOQRfqruipRuGYXa7_r6OakU_bx_PS-eMlXb8vXxeMq33MjUs6FEQgkFaGRQlmyIYg1alI-SG6w8HOtNC80D8bPx6gtwFwWJSoM5ElM2d1xdx_b35665LZtH5sR6QQgWqX0iJiy-2OrK6vkU9U2bh-r2sfBcXCHV5xyp1fEP5LdU5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066955738</pqid></control><display><type>article</type><title>Weak magnetohydrodynamic turbulence theory revisited</title><source>Alma/SFX Local Collection</source><creator>Ziebell, Luiz F. ; Yoon, Peter H. ; Choe, Gwangson</creator><creatorcontrib>Ziebell, Luiz F. ; Yoon, Peter H. ; Choe, Gwangson</creatorcontrib><description>Two recent papers, P. H. Yoon and G. Choe, Phys. Plasmas 28, 082306 (2021) and Yoon et al., Phys. Plasmas 29, 112303 (2022), utilized in the derivation of the kinetic equation for the intensity of turbulent fluctuations the assumption that the wave spectra are isotropic, that is, the ensemble-averaged magnetic field tensorial fluctuation intensity is given by the isotropic diagonal form,
⟨
δ
B
i
δ
B
j
⟩
k
=
⟨
δ
B
2
⟩
k
δ
i
j. However, it is more appropriate to describe the incompressible magnetohydrodynamic turbulence involving shear Alfvénic waves by modeling the turbulence spectrum as being anisotropic. That is, the tensorial fluctuation intensity should be different in diagonal elements across and along the direction of the wave vector,
⟨
δ
B
i
δ
B
j
⟩
k
=
1
2
⟨
δ
B
⊥
2
⟩
k
(
δ
i
j
−
k
i
k
j
/
k
2
)
+
⟨
δ
B
∥
2
⟩
k
(
k
i
k
j
/
k
2
). In the present paper, we thus reformulate the weak magnetohydrodynamic turbulence theory under the assumption of anisotropy and work out the form of nonlinear wave kinetic equation.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0195994</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Anisotropy ; Kinetic equations ; Magnetohydrodynamic turbulence ; Magnetohydrodynamic waves ; Plasmas (physics) ; Turbulent flow ; Wave spectra</subject><ispartof>Physics of plasmas, 2024-06, Vol.31 (6)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8047-6396 ; 0000-0003-0279-0280 ; 0000-0001-8134-3790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Ziebell, Luiz F.</creatorcontrib><creatorcontrib>Yoon, Peter H.</creatorcontrib><creatorcontrib>Choe, Gwangson</creatorcontrib><title>Weak magnetohydrodynamic turbulence theory revisited</title><title>Physics of plasmas</title><description>Two recent papers, P. H. Yoon and G. Choe, Phys. Plasmas 28, 082306 (2021) and Yoon et al., Phys. Plasmas 29, 112303 (2022), utilized in the derivation of the kinetic equation for the intensity of turbulent fluctuations the assumption that the wave spectra are isotropic, that is, the ensemble-averaged magnetic field tensorial fluctuation intensity is given by the isotropic diagonal form,
⟨
δ
B
i
δ
B
j
⟩
k
=
⟨
δ
B
2
⟩
k
δ
i
j. However, it is more appropriate to describe the incompressible magnetohydrodynamic turbulence involving shear Alfvénic waves by modeling the turbulence spectrum as being anisotropic. That is, the tensorial fluctuation intensity should be different in diagonal elements across and along the direction of the wave vector,
⟨
δ
B
i
δ
B
j
⟩
k
=
1
2
⟨
δ
B
⊥
2
⟩
k
(
δ
i
j
−
k
i
k
j
/
k
2
)
+
⟨
δ
B
∥
2
⟩
k
(
k
i
k
j
/
k
2
). In the present paper, we thus reformulate the weak magnetohydrodynamic turbulence theory under the assumption of anisotropy and work out the form of nonlinear wave kinetic equation.</description><subject>Anisotropy</subject><subject>Kinetic equations</subject><subject>Magnetohydrodynamic turbulence</subject><subject>Magnetohydrodynamic waves</subject><subject>Plasmas (physics)</subject><subject>Turbulent flow</subject><subject>Wave spectra</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkEFLAzEUhIMoWKsH_8GCN2HrS5O8JEcpWoWCF0VvIbt5tVu7uzWbFfbfu6U9zQwM88EwdsthxgHFg5oBt8paecYmHIzNNWp5fvAackT5dcmuum4LABKVmTD5Sf4nq_13Q6ndDCG2YWh8XZVZ6mPR76gpKUsbauOQRfqruipRuGYXa7_r6OakU_bx_PS-eMlXb8vXxeMq33MjUs6FEQgkFaGRQlmyIYg1alI-SG6w8HOtNC80D8bPx6gtwFwWJSoM5ElM2d1xdx_b35665LZtH5sR6QQgWqX0iJiy-2OrK6vkU9U2bh-r2sfBcXCHV5xyp1fEP5LdU5g</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Ziebell, Luiz F.</creator><creator>Yoon, Peter H.</creator><creator>Choe, Gwangson</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8047-6396</orcidid><orcidid>https://orcid.org/0000-0003-0279-0280</orcidid><orcidid>https://orcid.org/0000-0001-8134-3790</orcidid></search><sort><creationdate>202406</creationdate><title>Weak magnetohydrodynamic turbulence theory revisited</title><author>Ziebell, Luiz F. ; Yoon, Peter H. ; Choe, Gwangson</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-138360e45e684359e9dd3f67e5ad4186ba27571b71d8a26ba790024bc656deae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anisotropy</topic><topic>Kinetic equations</topic><topic>Magnetohydrodynamic turbulence</topic><topic>Magnetohydrodynamic waves</topic><topic>Plasmas (physics)</topic><topic>Turbulent flow</topic><topic>Wave spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ziebell, Luiz F.</creatorcontrib><creatorcontrib>Yoon, Peter H.</creatorcontrib><creatorcontrib>Choe, Gwangson</creatorcontrib><collection>AIP Open Access Journals</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ziebell, Luiz F.</au><au>Yoon, Peter H.</au><au>Choe, Gwangson</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak magnetohydrodynamic turbulence theory revisited</atitle><jtitle>Physics of plasmas</jtitle><date>2024-06</date><risdate>2024</risdate><volume>31</volume><issue>6</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Two recent papers, P. H. Yoon and G. Choe, Phys. Plasmas 28, 082306 (2021) and Yoon et al., Phys. Plasmas 29, 112303 (2022), utilized in the derivation of the kinetic equation for the intensity of turbulent fluctuations the assumption that the wave spectra are isotropic, that is, the ensemble-averaged magnetic field tensorial fluctuation intensity is given by the isotropic diagonal form,
⟨
δ
B
i
δ
B
j
⟩
k
=
⟨
δ
B
2
⟩
k
δ
i
j. However, it is more appropriate to describe the incompressible magnetohydrodynamic turbulence involving shear Alfvénic waves by modeling the turbulence spectrum as being anisotropic. That is, the tensorial fluctuation intensity should be different in diagonal elements across and along the direction of the wave vector,
⟨
δ
B
i
δ
B
j
⟩
k
=
1
2
⟨
δ
B
⊥
2
⟩
k
(
δ
i
j
−
k
i
k
j
/
k
2
)
+
⟨
δ
B
∥
2
⟩
k
(
k
i
k
j
/
k
2
). In the present paper, we thus reformulate the weak magnetohydrodynamic turbulence theory under the assumption of anisotropy and work out the form of nonlinear wave kinetic equation.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0195994</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8047-6396</orcidid><orcidid>https://orcid.org/0000-0003-0279-0280</orcidid><orcidid>https://orcid.org/0000-0001-8134-3790</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2024-06, Vol.31 (6) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0195994 |
source | Alma/SFX Local Collection |
subjects | Anisotropy Kinetic equations Magnetohydrodynamic turbulence Magnetohydrodynamic waves Plasmas (physics) Turbulent flow Wave spectra |
title | Weak magnetohydrodynamic turbulence theory revisited |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T16%3A25%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20magnetohydrodynamic%20turbulence%20theory%20revisited&rft.jtitle=Physics%20of%20plasmas&rft.au=Ziebell,%20Luiz%20F.&rft.date=2024-06&rft.volume=31&rft.issue=6&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0195994&rft_dat=%3Cproquest_scita%3E3066955738%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066955738&rft_id=info:pmid/&rfr_iscdi=true |