Weak magnetohydrodynamic turbulence theory revisited

Two recent papers, P. H. Yoon and G. Choe, Phys. Plasmas 28, 082306 (2021) and Yoon et al., Phys. Plasmas 29, 112303 (2022), utilized in the derivation of the kinetic equation for the intensity of turbulent fluctuations the assumption that the wave spectra are isotropic, that is, the ensemble-averag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2024-06, Vol.31 (6)
Hauptverfasser: Ziebell, Luiz F., Yoon, Peter H., Choe, Gwangson
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Physics of plasmas
container_volume 31
creator Ziebell, Luiz F.
Yoon, Peter H.
Choe, Gwangson
description Two recent papers, P. H. Yoon and G. Choe, Phys. Plasmas 28, 082306 (2021) and Yoon et al., Phys. Plasmas 29, 112303 (2022), utilized in the derivation of the kinetic equation for the intensity of turbulent fluctuations the assumption that the wave spectra are isotropic, that is, the ensemble-averaged magnetic field tensorial fluctuation intensity is given by the isotropic diagonal form, ⟨ δ B i δ B j ⟩ k = ⟨ δ B 2 ⟩ k δ i j. However, it is more appropriate to describe the incompressible magnetohydrodynamic turbulence involving shear Alfvénic waves by modeling the turbulence spectrum as being anisotropic. That is, the tensorial fluctuation intensity should be different in diagonal elements across and along the direction of the wave vector, ⟨ δ B i δ B j ⟩ k = 1 2   ⟨ δ B ⊥ 2 ⟩ k ( δ i j − k i k j / k 2 ) + ⟨ δ B ∥ 2 ⟩ k ( k i k j / k 2 ). In the present paper, we thus reformulate the weak magnetohydrodynamic turbulence theory under the assumption of anisotropy and work out the form of nonlinear wave kinetic equation.
doi_str_mv 10.1063/5.0195994
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0195994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066955738</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-138360e45e684359e9dd3f67e5ad4186ba27571b71d8a26ba790024bc656deae3</originalsourceid><addsrcrecordid>eNotkEFLAzEUhIMoWKsH_8GCN2HrS5O8JEcpWoWCF0VvIbt5tVu7uzWbFfbfu6U9zQwM88EwdsthxgHFg5oBt8paecYmHIzNNWp5fvAackT5dcmuum4LABKVmTD5Sf4nq_13Q6ndDCG2YWh8XZVZ6mPR76gpKUsbauOQRfqruipRuGYXa7_r6OakU_bx_PS-eMlXb8vXxeMq33MjUs6FEQgkFaGRQlmyIYg1alI-SG6w8HOtNC80D8bPx6gtwFwWJSoM5ElM2d1xdx_b35665LZtH5sR6QQgWqX0iJiy-2OrK6vkU9U2bh-r2sfBcXCHV5xyp1fEP5LdU5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066955738</pqid></control><display><type>article</type><title>Weak magnetohydrodynamic turbulence theory revisited</title><source>Alma/SFX Local Collection</source><creator>Ziebell, Luiz F. ; Yoon, Peter H. ; Choe, Gwangson</creator><creatorcontrib>Ziebell, Luiz F. ; Yoon, Peter H. ; Choe, Gwangson</creatorcontrib><description>Two recent papers, P. H. Yoon and G. Choe, Phys. Plasmas 28, 082306 (2021) and Yoon et al., Phys. Plasmas 29, 112303 (2022), utilized in the derivation of the kinetic equation for the intensity of turbulent fluctuations the assumption that the wave spectra are isotropic, that is, the ensemble-averaged magnetic field tensorial fluctuation intensity is given by the isotropic diagonal form, ⟨ δ B i δ B j ⟩ k = ⟨ δ B 2 ⟩ k δ i j. However, it is more appropriate to describe the incompressible magnetohydrodynamic turbulence involving shear Alfvénic waves by modeling the turbulence spectrum as being anisotropic. That is, the tensorial fluctuation intensity should be different in diagonal elements across and along the direction of the wave vector, ⟨ δ B i δ B j ⟩ k = 1 2   ⟨ δ B ⊥ 2 ⟩ k ( δ i j − k i k j / k 2 ) + ⟨ δ B ∥ 2 ⟩ k ( k i k j / k 2 ). In the present paper, we thus reformulate the weak magnetohydrodynamic turbulence theory under the assumption of anisotropy and work out the form of nonlinear wave kinetic equation.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0195994</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Anisotropy ; Kinetic equations ; Magnetohydrodynamic turbulence ; Magnetohydrodynamic waves ; Plasmas (physics) ; Turbulent flow ; Wave spectra</subject><ispartof>Physics of plasmas, 2024-06, Vol.31 (6)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8047-6396 ; 0000-0003-0279-0280 ; 0000-0001-8134-3790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Ziebell, Luiz F.</creatorcontrib><creatorcontrib>Yoon, Peter H.</creatorcontrib><creatorcontrib>Choe, Gwangson</creatorcontrib><title>Weak magnetohydrodynamic turbulence theory revisited</title><title>Physics of plasmas</title><description>Two recent papers, P. H. Yoon and G. Choe, Phys. Plasmas 28, 082306 (2021) and Yoon et al., Phys. Plasmas 29, 112303 (2022), utilized in the derivation of the kinetic equation for the intensity of turbulent fluctuations the assumption that the wave spectra are isotropic, that is, the ensemble-averaged magnetic field tensorial fluctuation intensity is given by the isotropic diagonal form, ⟨ δ B i δ B j ⟩ k = ⟨ δ B 2 ⟩ k δ i j. However, it is more appropriate to describe the incompressible magnetohydrodynamic turbulence involving shear Alfvénic waves by modeling the turbulence spectrum as being anisotropic. That is, the tensorial fluctuation intensity should be different in diagonal elements across and along the direction of the wave vector, ⟨ δ B i δ B j ⟩ k = 1 2   ⟨ δ B ⊥ 2 ⟩ k ( δ i j − k i k j / k 2 ) + ⟨ δ B ∥ 2 ⟩ k ( k i k j / k 2 ). In the present paper, we thus reformulate the weak magnetohydrodynamic turbulence theory under the assumption of anisotropy and work out the form of nonlinear wave kinetic equation.</description><subject>Anisotropy</subject><subject>Kinetic equations</subject><subject>Magnetohydrodynamic turbulence</subject><subject>Magnetohydrodynamic waves</subject><subject>Plasmas (physics)</subject><subject>Turbulent flow</subject><subject>Wave spectra</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkEFLAzEUhIMoWKsH_8GCN2HrS5O8JEcpWoWCF0VvIbt5tVu7uzWbFfbfu6U9zQwM88EwdsthxgHFg5oBt8paecYmHIzNNWp5fvAackT5dcmuum4LABKVmTD5Sf4nq_13Q6ndDCG2YWh8XZVZ6mPR76gpKUsbauOQRfqruipRuGYXa7_r6OakU_bx_PS-eMlXb8vXxeMq33MjUs6FEQgkFaGRQlmyIYg1alI-SG6w8HOtNC80D8bPx6gtwFwWJSoM5ElM2d1xdx_b35665LZtH5sR6QQgWqX0iJiy-2OrK6vkU9U2bh-r2sfBcXCHV5xyp1fEP5LdU5g</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Ziebell, Luiz F.</creator><creator>Yoon, Peter H.</creator><creator>Choe, Gwangson</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8047-6396</orcidid><orcidid>https://orcid.org/0000-0003-0279-0280</orcidid><orcidid>https://orcid.org/0000-0001-8134-3790</orcidid></search><sort><creationdate>202406</creationdate><title>Weak magnetohydrodynamic turbulence theory revisited</title><author>Ziebell, Luiz F. ; Yoon, Peter H. ; Choe, Gwangson</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-138360e45e684359e9dd3f67e5ad4186ba27571b71d8a26ba790024bc656deae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anisotropy</topic><topic>Kinetic equations</topic><topic>Magnetohydrodynamic turbulence</topic><topic>Magnetohydrodynamic waves</topic><topic>Plasmas (physics)</topic><topic>Turbulent flow</topic><topic>Wave spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ziebell, Luiz F.</creatorcontrib><creatorcontrib>Yoon, Peter H.</creatorcontrib><creatorcontrib>Choe, Gwangson</creatorcontrib><collection>AIP Open Access Journals</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ziebell, Luiz F.</au><au>Yoon, Peter H.</au><au>Choe, Gwangson</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak magnetohydrodynamic turbulence theory revisited</atitle><jtitle>Physics of plasmas</jtitle><date>2024-06</date><risdate>2024</risdate><volume>31</volume><issue>6</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Two recent papers, P. H. Yoon and G. Choe, Phys. Plasmas 28, 082306 (2021) and Yoon et al., Phys. Plasmas 29, 112303 (2022), utilized in the derivation of the kinetic equation for the intensity of turbulent fluctuations the assumption that the wave spectra are isotropic, that is, the ensemble-averaged magnetic field tensorial fluctuation intensity is given by the isotropic diagonal form, ⟨ δ B i δ B j ⟩ k = ⟨ δ B 2 ⟩ k δ i j. However, it is more appropriate to describe the incompressible magnetohydrodynamic turbulence involving shear Alfvénic waves by modeling the turbulence spectrum as being anisotropic. That is, the tensorial fluctuation intensity should be different in diagonal elements across and along the direction of the wave vector, ⟨ δ B i δ B j ⟩ k = 1 2   ⟨ δ B ⊥ 2 ⟩ k ( δ i j − k i k j / k 2 ) + ⟨ δ B ∥ 2 ⟩ k ( k i k j / k 2 ). In the present paper, we thus reformulate the weak magnetohydrodynamic turbulence theory under the assumption of anisotropy and work out the form of nonlinear wave kinetic equation.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0195994</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8047-6396</orcidid><orcidid>https://orcid.org/0000-0003-0279-0280</orcidid><orcidid>https://orcid.org/0000-0001-8134-3790</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2024-06, Vol.31 (6)
issn 1070-664X
1089-7674
language eng
recordid cdi_scitation_primary_10_1063_5_0195994
source Alma/SFX Local Collection
subjects Anisotropy
Kinetic equations
Magnetohydrodynamic turbulence
Magnetohydrodynamic waves
Plasmas (physics)
Turbulent flow
Wave spectra
title Weak magnetohydrodynamic turbulence theory revisited
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T16%3A25%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20magnetohydrodynamic%20turbulence%20theory%20revisited&rft.jtitle=Physics%20of%20plasmas&rft.au=Ziebell,%20Luiz%20F.&rft.date=2024-06&rft.volume=31&rft.issue=6&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0195994&rft_dat=%3Cproquest_scita%3E3066955738%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066955738&rft_id=info:pmid/&rfr_iscdi=true