An artificial intelligence model estimating the typical energy usage for larger

In constructing customized machine learning models for fuel consumption, this research recommends a data summary strategy based on distance rather than the conventional time period. Using this technique, an accurate estimate neural network algorithm for median energy usage in heavy trucks is produce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Akarapu, Mahesh, Chiranjeevi, Battu, Sunitha, Gadipe, Ruchinandan, Masani, Sheshikala, M., Reddy, Rajasri
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2971
creator Akarapu, Mahesh
Chiranjeevi, Battu
Sunitha, Gadipe
Ruchinandan, Masani
Sheshikala, M.
Reddy, Rajasri
description In constructing customized machine learning models for fuel consumption, this research recommends a data summary strategy based on distance rather than the conventional time period. Using this technique, an accurate estimate neural network algorithm for median energy usage in heavy trucks is produced using 7factorsextended velocity of the vehicle ofway slope. For reduce fuel usage across the board, the suggested methodology may be quickly established and implemented for each individual trucks. The predictors from the systems are combined for distance travelled across preset window widths. The results of the evaluation of different window widths show that for paths including both motorway & residential phase shift portions, a 1 km window is capable of estimating energy usage with such a 0.99 coefficient of determination and average utter and total maximum average percentage difference below four percentage.
doi_str_mv 10.1063/5.0195777
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0195777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064718898</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-858300162003b65e2363459fcbfb0240cd03bdd50bdd0d8b65bef878beb246863</originalsourceid><addsrcrecordid>eNotkM1LxDAQxYMoWFcP_gcBb0LXSdN89LgsugoLe1HwFvoxrVm6aU3TQ_97I7uXN_D4MTPvEfLIYM1A8hexBlYIpdQVSZgQLFWSyWuSABR5muX8-5bcTdMRICuU0gk5bBwtfbCtrW3ZU-sC9r3t0NVIT0ODPcUp2FMZrOto-EEaltHWkUSHvlvoPJUd0nbwtC99h_6e3LRlP-HDZa7I19vr5_Y93R92H9vNPh0Z5yHVQnMAJjMAXkmBGZc8F0VbV20FWQ51E_2mERAFGh2RClutdIVVlkst-Yo8nfeOfvid44_mOMzexZOGg8wV07rQkXo-U1NtQ8wwODP6mMYvhoH5L8wIcymM_wEFY1z4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3064718898</pqid></control><display><type>conference_proceeding</type><title>An artificial intelligence model estimating the typical energy usage for larger</title><source>AIP Journals Complete</source><creator>Akarapu, Mahesh ; Chiranjeevi, Battu ; Sunitha, Gadipe ; Ruchinandan, Masani ; Sheshikala, M. ; Reddy, Rajasri</creator><contributor>Mahender, Kommabatla ; Reddy, I. Rajasri</contributor><creatorcontrib>Akarapu, Mahesh ; Chiranjeevi, Battu ; Sunitha, Gadipe ; Ruchinandan, Masani ; Sheshikala, M. ; Reddy, Rajasri ; Mahender, Kommabatla ; Reddy, I. Rajasri</creatorcontrib><description>In constructing customized machine learning models for fuel consumption, this research recommends a data summary strategy based on distance rather than the conventional time period. Using this technique, an accurate estimate neural network algorithm for median energy usage in heavy trucks is produced using 7factorsextended velocity of the vehicle ofway slope. For reduce fuel usage across the board, the suggested methodology may be quickly established and implemented for each individual trucks. The predictors from the systems are combined for distance travelled across preset window widths. The results of the evaluation of different window widths show that for paths including both motorway &amp; residential phase shift portions, a 1 km window is capable of estimating energy usage with such a 0.99 coefficient of determination and average utter and total maximum average percentage difference below four percentage.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0195777</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Artificial intelligence ; Energy consumption ; Fuel consumption ; Heavy duty trucks ; Machine learning ; Neural networks</subject><ispartof>AIP conference proceedings, 2024, Vol.2971 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0195777$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76126</link.rule.ids></links><search><contributor>Mahender, Kommabatla</contributor><contributor>Reddy, I. Rajasri</contributor><creatorcontrib>Akarapu, Mahesh</creatorcontrib><creatorcontrib>Chiranjeevi, Battu</creatorcontrib><creatorcontrib>Sunitha, Gadipe</creatorcontrib><creatorcontrib>Ruchinandan, Masani</creatorcontrib><creatorcontrib>Sheshikala, M.</creatorcontrib><creatorcontrib>Reddy, Rajasri</creatorcontrib><title>An artificial intelligence model estimating the typical energy usage for larger</title><title>AIP conference proceedings</title><description>In constructing customized machine learning models for fuel consumption, this research recommends a data summary strategy based on distance rather than the conventional time period. Using this technique, an accurate estimate neural network algorithm for median energy usage in heavy trucks is produced using 7factorsextended velocity of the vehicle ofway slope. For reduce fuel usage across the board, the suggested methodology may be quickly established and implemented for each individual trucks. The predictors from the systems are combined for distance travelled across preset window widths. The results of the evaluation of different window widths show that for paths including both motorway &amp; residential phase shift portions, a 1 km window is capable of estimating energy usage with such a 0.99 coefficient of determination and average utter and total maximum average percentage difference below four percentage.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Energy consumption</subject><subject>Fuel consumption</subject><subject>Heavy duty trucks</subject><subject>Machine learning</subject><subject>Neural networks</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkM1LxDAQxYMoWFcP_gcBb0LXSdN89LgsugoLe1HwFvoxrVm6aU3TQ_97I7uXN_D4MTPvEfLIYM1A8hexBlYIpdQVSZgQLFWSyWuSABR5muX8-5bcTdMRICuU0gk5bBwtfbCtrW3ZU-sC9r3t0NVIT0ODPcUp2FMZrOto-EEaltHWkUSHvlvoPJUd0nbwtC99h_6e3LRlP-HDZa7I19vr5_Y93R92H9vNPh0Z5yHVQnMAJjMAXkmBGZc8F0VbV20FWQ51E_2mERAFGh2RClutdIVVlkst-Yo8nfeOfvid44_mOMzexZOGg8wV07rQkXo-U1NtQ8wwODP6mMYvhoH5L8wIcymM_wEFY1z4</recordid><startdate>20240605</startdate><enddate>20240605</enddate><creator>Akarapu, Mahesh</creator><creator>Chiranjeevi, Battu</creator><creator>Sunitha, Gadipe</creator><creator>Ruchinandan, Masani</creator><creator>Sheshikala, M.</creator><creator>Reddy, Rajasri</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240605</creationdate><title>An artificial intelligence model estimating the typical energy usage for larger</title><author>Akarapu, Mahesh ; Chiranjeevi, Battu ; Sunitha, Gadipe ; Ruchinandan, Masani ; Sheshikala, M. ; Reddy, Rajasri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-858300162003b65e2363459fcbfb0240cd03bdd50bdd0d8b65bef878beb246863</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Energy consumption</topic><topic>Fuel consumption</topic><topic>Heavy duty trucks</topic><topic>Machine learning</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akarapu, Mahesh</creatorcontrib><creatorcontrib>Chiranjeevi, Battu</creatorcontrib><creatorcontrib>Sunitha, Gadipe</creatorcontrib><creatorcontrib>Ruchinandan, Masani</creatorcontrib><creatorcontrib>Sheshikala, M.</creatorcontrib><creatorcontrib>Reddy, Rajasri</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akarapu, Mahesh</au><au>Chiranjeevi, Battu</au><au>Sunitha, Gadipe</au><au>Ruchinandan, Masani</au><au>Sheshikala, M.</au><au>Reddy, Rajasri</au><au>Mahender, Kommabatla</au><au>Reddy, I. Rajasri</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An artificial intelligence model estimating the typical energy usage for larger</atitle><btitle>AIP conference proceedings</btitle><date>2024-06-05</date><risdate>2024</risdate><volume>2971</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In constructing customized machine learning models for fuel consumption, this research recommends a data summary strategy based on distance rather than the conventional time period. Using this technique, an accurate estimate neural network algorithm for median energy usage in heavy trucks is produced using 7factorsextended velocity of the vehicle ofway slope. For reduce fuel usage across the board, the suggested methodology may be quickly established and implemented for each individual trucks. The predictors from the systems are combined for distance travelled across preset window widths. The results of the evaluation of different window widths show that for paths including both motorway &amp; residential phase shift portions, a 1 km window is capable of estimating energy usage with such a 0.99 coefficient of determination and average utter and total maximum average percentage difference below four percentage.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0195777</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.2971 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0195777
source AIP Journals Complete
subjects Algorithms
Artificial intelligence
Energy consumption
Fuel consumption
Heavy duty trucks
Machine learning
Neural networks
title An artificial intelligence model estimating the typical energy usage for larger
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A14%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20artificial%20intelligence%20model%20estimating%20the%20typical%20energy%20usage%20for%20larger&rft.btitle=AIP%20conference%20proceedings&rft.au=Akarapu,%20Mahesh&rft.date=2024-06-05&rft.volume=2971&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0195777&rft_dat=%3Cproquest_scita%3E3064718898%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064718898&rft_id=info:pmid/&rfr_iscdi=true