A deep learning framework for leakage diagnosis and time series water consumption prediction
A smart city water distribution system offers a dependable and trustworthy water supply through smart water meters. To monitor, manage, automate, and control water distribution in a smart city, a smart water grid uses IoT devices like sensors, smart water meters, and controllers together with data a...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 3007 |
creator | Pesari, Vasanth Sena Porika, Sammula |
description | A smart city water distribution system offers a dependable and trustworthy water supply through smart water meters. To monitor, manage, automate, and control water distribution in a smart city, a smart water grid uses IoT devices like sensors, smart water meters, and controllers together with data analytics. A wealth of information on water pressure, availability, contamination, and water distribution system flaws may be gathered thanks to the smart sensors. Real-time data collection and analysis ensure that losses are kept to a minimum, improving system effectiveness. By imitating the self-learning functions layer and building a data-driven model with the available dataset, deep learning (DL), the most advanced paradigm of artificial neural network (ANN) computing, distinguishes itself from conventional or shallow learning methods. The suggested framework focuses on the creation of an effective deep learning framework with possible applications in data fusion, predictive analysis, the identification of anomalous events from recorded time series data, and the long short-term memory model for water usage prediction. |
doi_str_mv | 10.1063/5.0195057 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0195057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2928693685</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1687-60250bbc5f0d6f8c5a8ba81a769accc012a0646f713c159375b429b18d3a8d193</originalsourceid><addsrcrecordid>eNotUEtLAzEYDKJgrR78BwFvwtZks3kdS_EFBS8KHoTwbZJd0nY3a7Kl-O_t0p5mGIaZYRC6p2RBiWBPfEGo5oTLCzSjnNNCCiou0YwQXRVlxb6v0U3OG0JKLaWaoZ8ldt4PeOch9aFvcZOg84eYtriJaZK30HrsArR9zCFj6B0eQ-dx9in4jA8w-oRt7PO-G8YQezwk74Kd6C26amCX_d0Z5-jr5flz9VasP17fV8t1MVChZCFIyUldW94QJxplOagaFAUpNFhrCS2BiEo0kjJLuWaS11Wpa6ocA-WoZnP0cModUvzd-zyaTdyn_lhpSl0qoZlQ_Oh6PLmyDSNM-8yQQgfpz1BipvcMN-f32D-_S2G6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2928693685</pqid></control><display><type>conference_proceeding</type><title>A deep learning framework for leakage diagnosis and time series water consumption prediction</title><source>AIP Journals Complete</source><creator>Pesari, Vasanth Sena ; Porika, Sammula</creator><contributor>Purohit, Rajesh ; Singh, Swadesh Kumar ; Muttil, Nitin ; Kotkunde, Nitin ; Nikhare, Chetan P</contributor><creatorcontrib>Pesari, Vasanth Sena ; Porika, Sammula ; Purohit, Rajesh ; Singh, Swadesh Kumar ; Muttil, Nitin ; Kotkunde, Nitin ; Nikhare, Chetan P</creatorcontrib><description>A smart city water distribution system offers a dependable and trustworthy water supply through smart water meters. To monitor, manage, automate, and control water distribution in a smart city, a smart water grid uses IoT devices like sensors, smart water meters, and controllers together with data analytics. A wealth of information on water pressure, availability, contamination, and water distribution system flaws may be gathered thanks to the smart sensors. Real-time data collection and analysis ensure that losses are kept to a minimum, improving system effectiveness. By imitating the self-learning functions layer and building a data-driven model with the available dataset, deep learning (DL), the most advanced paradigm of artificial neural network (ANN) computing, distinguishes itself from conventional or shallow learning methods. The suggested framework focuses on the creation of an effective deep learning framework with possible applications in data fusion, predictive analysis, the identification of anomalous events from recorded time series data, and the long short-term memory model for water usage prediction.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0195057</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Artificial neural networks ; Availability ; Data analysis ; Data collection ; Data integration ; Deep learning ; Machine learning ; Smart cities ; Smart sensors ; System effectiveness ; Time series ; Water consumption ; Water distribution ; Water engineering ; Water meters ; Water pressure ; Water supply</subject><ispartof>AIP Conference Proceedings, 2024, Vol.3007 (1)</ispartof><rights>AIP Publishing LLC</rights><rights>2024 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0195057$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Purohit, Rajesh</contributor><contributor>Singh, Swadesh Kumar</contributor><contributor>Muttil, Nitin</contributor><contributor>Kotkunde, Nitin</contributor><contributor>Nikhare, Chetan P</contributor><creatorcontrib>Pesari, Vasanth Sena</creatorcontrib><creatorcontrib>Porika, Sammula</creatorcontrib><title>A deep learning framework for leakage diagnosis and time series water consumption prediction</title><title>AIP Conference Proceedings</title><description>A smart city water distribution system offers a dependable and trustworthy water supply through smart water meters. To monitor, manage, automate, and control water distribution in a smart city, a smart water grid uses IoT devices like sensors, smart water meters, and controllers together with data analytics. A wealth of information on water pressure, availability, contamination, and water distribution system flaws may be gathered thanks to the smart sensors. Real-time data collection and analysis ensure that losses are kept to a minimum, improving system effectiveness. By imitating the self-learning functions layer and building a data-driven model with the available dataset, deep learning (DL), the most advanced paradigm of artificial neural network (ANN) computing, distinguishes itself from conventional or shallow learning methods. The suggested framework focuses on the creation of an effective deep learning framework with possible applications in data fusion, predictive analysis, the identification of anomalous events from recorded time series data, and the long short-term memory model for water usage prediction.</description><subject>Artificial neural networks</subject><subject>Availability</subject><subject>Data analysis</subject><subject>Data collection</subject><subject>Data integration</subject><subject>Deep learning</subject><subject>Machine learning</subject><subject>Smart cities</subject><subject>Smart sensors</subject><subject>System effectiveness</subject><subject>Time series</subject><subject>Water consumption</subject><subject>Water distribution</subject><subject>Water engineering</subject><subject>Water meters</subject><subject>Water pressure</subject><subject>Water supply</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotUEtLAzEYDKJgrR78BwFvwtZks3kdS_EFBS8KHoTwbZJd0nY3a7Kl-O_t0p5mGIaZYRC6p2RBiWBPfEGo5oTLCzSjnNNCCiou0YwQXRVlxb6v0U3OG0JKLaWaoZ8ldt4PeOch9aFvcZOg84eYtriJaZK30HrsArR9zCFj6B0eQ-dx9in4jA8w-oRt7PO-G8YQezwk74Kd6C26amCX_d0Z5-jr5flz9VasP17fV8t1MVChZCFIyUldW94QJxplOagaFAUpNFhrCS2BiEo0kjJLuWaS11Wpa6ocA-WoZnP0cModUvzd-zyaTdyn_lhpSl0qoZlQ_Oh6PLmyDSNM-8yQQgfpz1BipvcMN-f32D-_S2G6</recordid><startdate>20240220</startdate><enddate>20240220</enddate><creator>Pesari, Vasanth Sena</creator><creator>Porika, Sammula</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240220</creationdate><title>A deep learning framework for leakage diagnosis and time series water consumption prediction</title><author>Pesari, Vasanth Sena ; Porika, Sammula</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1687-60250bbc5f0d6f8c5a8ba81a769accc012a0646f713c159375b429b18d3a8d193</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Availability</topic><topic>Data analysis</topic><topic>Data collection</topic><topic>Data integration</topic><topic>Deep learning</topic><topic>Machine learning</topic><topic>Smart cities</topic><topic>Smart sensors</topic><topic>System effectiveness</topic><topic>Time series</topic><topic>Water consumption</topic><topic>Water distribution</topic><topic>Water engineering</topic><topic>Water meters</topic><topic>Water pressure</topic><topic>Water supply</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pesari, Vasanth Sena</creatorcontrib><creatorcontrib>Porika, Sammula</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pesari, Vasanth Sena</au><au>Porika, Sammula</au><au>Purohit, Rajesh</au><au>Singh, Swadesh Kumar</au><au>Muttil, Nitin</au><au>Kotkunde, Nitin</au><au>Nikhare, Chetan P</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A deep learning framework for leakage diagnosis and time series water consumption prediction</atitle><btitle>AIP Conference Proceedings</btitle><date>2024-02-20</date><risdate>2024</risdate><volume>3007</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>A smart city water distribution system offers a dependable and trustworthy water supply through smart water meters. To monitor, manage, automate, and control water distribution in a smart city, a smart water grid uses IoT devices like sensors, smart water meters, and controllers together with data analytics. A wealth of information on water pressure, availability, contamination, and water distribution system flaws may be gathered thanks to the smart sensors. Real-time data collection and analysis ensure that losses are kept to a minimum, improving system effectiveness. By imitating the self-learning functions layer and building a data-driven model with the available dataset, deep learning (DL), the most advanced paradigm of artificial neural network (ANN) computing, distinguishes itself from conventional or shallow learning methods. The suggested framework focuses on the creation of an effective deep learning framework with possible applications in data fusion, predictive analysis, the identification of anomalous events from recorded time series data, and the long short-term memory model for water usage prediction.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0195057</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2024, Vol.3007 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0195057 |
source | AIP Journals Complete |
subjects | Artificial neural networks Availability Data analysis Data collection Data integration Deep learning Machine learning Smart cities Smart sensors System effectiveness Time series Water consumption Water distribution Water engineering Water meters Water pressure Water supply |
title | A deep learning framework for leakage diagnosis and time series water consumption prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A01%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20deep%20learning%20framework%20for%20leakage%20diagnosis%20and%20time%20series%20water%20consumption%20prediction&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Pesari,%20Vasanth%20Sena&rft.date=2024-02-20&rft.volume=3007&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0195057&rft_dat=%3Cproquest_scita%3E2928693685%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2928693685&rft_id=info:pmid/&rfr_iscdi=true |