Rainbow connection and strong rainbow connection number on the corona product of sandat graphs

Edge coloring in a graph is called a rainbow connected if each pair of graph vertices has a rainbow path (i.e., a path with distinct edge colors). The fewest colors utilized so that each pair of graph vertices has a rainbow path is called a rainbow connection number. Meanwhile, if each pair of graph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Saputri, Ainin Yusri, Susanto, Hery, Rahmadani, Desi
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3049
creator Saputri, Ainin Yusri
Susanto, Hery
Rahmadani, Desi
description Edge coloring in a graph is called a rainbow connected if each pair of graph vertices has a rainbow path (i.e., a path with distinct edge colors). The fewest colors utilized so that each pair of graph vertices has a rainbow path is called a rainbow connection number. Meanwhile, if each pair of graph vertices has the shortest path with no edges of the same color, this graph can be called strongly rainbow connected. This path is best known as a rainbow geodesic. The strong rainbow connection number is the fewest colors utilized so that every two vertices in a graph have a rainbow geodesic. In this paper, we determine a strong rainbow connection number of sandat graphs as well as a rainbow and strong rainbow connection numbers of graphs that are obtained from the corona product between a sandat graph St(n) and the complement complete graph Kn¯. For the results, we obtained that a strong rainbow connection number of St (n) = n with n > 1, and a rainbow and strong rainbow connection number on the corona product of sandat graphs with n > 1, equals the number of pendant edges.
doi_str_mv 10.1063/5.0194363
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0194363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921283975</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1683-6c1d79c6e42dcc6dccebec44dc8ea3460b930fa5bbb7757bdc3e72d583da82c93</originalsourceid><addsrcrecordid>eNplkMtKAzEUhoMoWKsL3yDgTpiaeyZLKVqFgiAKrgy5tZ1iM2OSQXx7U9qdi8M58H_n9gNwjdEMI0Hv-AxhxaigJ2CCOceNFFicgglCijWE0Y9zcJHzFiGipGwn4PPVdNH2P9D1MQZXuj5CEz3MJfVxDdN_NY47GxKsVdmEKlTOwCH1fnQF9iuYa7spcJ3MsMmX4GxlvnK4OuYpeH98eJs_NcuXxfP8ftkMWLS0EQ57qZwIjHjnRI1gg2PMuzYYygSyiqKV4dZaKbm03tEgiect9aYlTtEpuDnMrYd8jyEXve3HFOtKTRTBpKVK8krdHqjsumL23-ghdTuTfjVGeu-f5vroH_0DoZBkMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2921283975</pqid></control><display><type>conference_proceeding</type><title>Rainbow connection and strong rainbow connection number on the corona product of sandat graphs</title><source>AIP Journals Complete</source><creator>Saputri, Ainin Yusri ; Susanto, Hery ; Rahmadani, Desi</creator><contributor>Anwar, Lathiful ; Rahmadani, Desi ; Rofiki, Imam ; Listiawan, Tomi ; Pahrany, Andi Daniah ; Darmawan, Puguh ; Cahyani, Denis Eka</contributor><creatorcontrib>Saputri, Ainin Yusri ; Susanto, Hery ; Rahmadani, Desi ; Anwar, Lathiful ; Rahmadani, Desi ; Rofiki, Imam ; Listiawan, Tomi ; Pahrany, Andi Daniah ; Darmawan, Puguh ; Cahyani, Denis Eka</creatorcontrib><description>Edge coloring in a graph is called a rainbow connected if each pair of graph vertices has a rainbow path (i.e., a path with distinct edge colors). The fewest colors utilized so that each pair of graph vertices has a rainbow path is called a rainbow connection number. Meanwhile, if each pair of graph vertices has the shortest path with no edges of the same color, this graph can be called strongly rainbow connected. This path is best known as a rainbow geodesic. The strong rainbow connection number is the fewest colors utilized so that every two vertices in a graph have a rainbow geodesic. In this paper, we determine a strong rainbow connection number of sandat graphs as well as a rainbow and strong rainbow connection numbers of graphs that are obtained from the corona product between a sandat graph St(n) and the complement complete graph Kn¯. For the results, we obtained that a strong rainbow connection number of St (n) = n with n &gt; 1, and a rainbow and strong rainbow connection number on the corona product of sandat graphs with n &gt; 1, equals the number of pendant edges.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0194363</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Apexes ; Graph coloring ; Graph theory ; Graphs ; Shortest-path problems</subject><ispartof>AIP Conference Proceedings, 2024, Vol.3049 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0194363$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Anwar, Lathiful</contributor><contributor>Rahmadani, Desi</contributor><contributor>Rofiki, Imam</contributor><contributor>Listiawan, Tomi</contributor><contributor>Pahrany, Andi Daniah</contributor><contributor>Darmawan, Puguh</contributor><contributor>Cahyani, Denis Eka</contributor><creatorcontrib>Saputri, Ainin Yusri</creatorcontrib><creatorcontrib>Susanto, Hery</creatorcontrib><creatorcontrib>Rahmadani, Desi</creatorcontrib><title>Rainbow connection and strong rainbow connection number on the corona product of sandat graphs</title><title>AIP Conference Proceedings</title><description>Edge coloring in a graph is called a rainbow connected if each pair of graph vertices has a rainbow path (i.e., a path with distinct edge colors). The fewest colors utilized so that each pair of graph vertices has a rainbow path is called a rainbow connection number. Meanwhile, if each pair of graph vertices has the shortest path with no edges of the same color, this graph can be called strongly rainbow connected. This path is best known as a rainbow geodesic. The strong rainbow connection number is the fewest colors utilized so that every two vertices in a graph have a rainbow geodesic. In this paper, we determine a strong rainbow connection number of sandat graphs as well as a rainbow and strong rainbow connection numbers of graphs that are obtained from the corona product between a sandat graph St(n) and the complement complete graph Kn¯. For the results, we obtained that a strong rainbow connection number of St (n) = n with n &gt; 1, and a rainbow and strong rainbow connection number on the corona product of sandat graphs with n &gt; 1, equals the number of pendant edges.</description><subject>Apexes</subject><subject>Graph coloring</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Shortest-path problems</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNplkMtKAzEUhoMoWKsL3yDgTpiaeyZLKVqFgiAKrgy5tZ1iM2OSQXx7U9qdi8M58H_n9gNwjdEMI0Hv-AxhxaigJ2CCOceNFFicgglCijWE0Y9zcJHzFiGipGwn4PPVdNH2P9D1MQZXuj5CEz3MJfVxDdN_NY47GxKsVdmEKlTOwCH1fnQF9iuYa7spcJ3MsMmX4GxlvnK4OuYpeH98eJs_NcuXxfP8ftkMWLS0EQ57qZwIjHjnRI1gg2PMuzYYygSyiqKV4dZaKbm03tEgiect9aYlTtEpuDnMrYd8jyEXve3HFOtKTRTBpKVK8krdHqjsumL23-ghdTuTfjVGeu-f5vroH_0DoZBkMw</recordid><startdate>20240202</startdate><enddate>20240202</enddate><creator>Saputri, Ainin Yusri</creator><creator>Susanto, Hery</creator><creator>Rahmadani, Desi</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240202</creationdate><title>Rainbow connection and strong rainbow connection number on the corona product of sandat graphs</title><author>Saputri, Ainin Yusri ; Susanto, Hery ; Rahmadani, Desi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1683-6c1d79c6e42dcc6dccebec44dc8ea3460b930fa5bbb7757bdc3e72d583da82c93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Apexes</topic><topic>Graph coloring</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Shortest-path problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saputri, Ainin Yusri</creatorcontrib><creatorcontrib>Susanto, Hery</creatorcontrib><creatorcontrib>Rahmadani, Desi</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saputri, Ainin Yusri</au><au>Susanto, Hery</au><au>Rahmadani, Desi</au><au>Anwar, Lathiful</au><au>Rahmadani, Desi</au><au>Rofiki, Imam</au><au>Listiawan, Tomi</au><au>Pahrany, Andi Daniah</au><au>Darmawan, Puguh</au><au>Cahyani, Denis Eka</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Rainbow connection and strong rainbow connection number on the corona product of sandat graphs</atitle><btitle>AIP Conference Proceedings</btitle><date>2024-02-02</date><risdate>2024</risdate><volume>3049</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Edge coloring in a graph is called a rainbow connected if each pair of graph vertices has a rainbow path (i.e., a path with distinct edge colors). The fewest colors utilized so that each pair of graph vertices has a rainbow path is called a rainbow connection number. Meanwhile, if each pair of graph vertices has the shortest path with no edges of the same color, this graph can be called strongly rainbow connected. This path is best known as a rainbow geodesic. The strong rainbow connection number is the fewest colors utilized so that every two vertices in a graph have a rainbow geodesic. In this paper, we determine a strong rainbow connection number of sandat graphs as well as a rainbow and strong rainbow connection numbers of graphs that are obtained from the corona product between a sandat graph St(n) and the complement complete graph Kn¯. For the results, we obtained that a strong rainbow connection number of St (n) = n with n &gt; 1, and a rainbow and strong rainbow connection number on the corona product of sandat graphs with n &gt; 1, equals the number of pendant edges.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0194363</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2024, Vol.3049 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0194363
source AIP Journals Complete
subjects Apexes
Graph coloring
Graph theory
Graphs
Shortest-path problems
title Rainbow connection and strong rainbow connection number on the corona product of sandat graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A00%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Rainbow%20connection%20and%20strong%20rainbow%20connection%20number%20on%20the%20corona%20product%20of%20sandat%20graphs&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Saputri,%20Ainin%20Yusri&rft.date=2024-02-02&rft.volume=3049&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0194363&rft_dat=%3Cproquest_scita%3E2921283975%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921283975&rft_id=info:pmid/&rfr_iscdi=true