Shubnikov–de Haas oscillations of biaxial-strain-tuned superconductors in pulsed magnetic field up to 60 T

Two-dimensional (2D) materials have gained increasing prominence not only in fundamental research but also in daily applications. However, to fully harness their potential, it is crucial to optimize their properties with an external parameter and track the electronic structure simultaneously. Magnet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:APL materials 2024-02, Vol.12 (2), p.021124-021124-6
Hauptverfasser: Yip, King Yau, Wang, Lingfei, Poon, Tsz Fung, Yu, Kai Ham, Lam, Siu Tung, Lai, Kwing To, Singleton, John, Balakirev, Fedor F., Goh, Swee K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 021124-6
container_issue 2
container_start_page 021124
container_title APL materials
container_volume 12
creator Yip, King Yau
Wang, Lingfei
Poon, Tsz Fung
Yu, Kai Ham
Lam, Siu Tung
Lai, Kwing To
Singleton, John
Balakirev, Fedor F.
Goh, Swee K.
description Two-dimensional (2D) materials have gained increasing prominence not only in fundamental research but also in daily applications. However, to fully harness their potential, it is crucial to optimize their properties with an external parameter and track the electronic structure simultaneously. Magnetotransport over a wide magnetic field range is a powerful method to probe the electronic structure and, for metallic 2D materials, quantum oscillations superimposed on the transport signals encode Fermi surface parameters. In this manuscript, we utilize biaxial strain as an external tuning parameter and investigate the effects of strain on the electronic properties of two quasi-2D superconductors, MoTe2 and RbV3Sb5, by measuring their magnetoresistance in pulsed magnetic fields up to 60 T. With a careful selection of insulating substrates, we demonstrate the possibility of both the compressive and tensile biaxial strains imposed on MoTe2 and RbV3Sb5, respectively. For both systems, the applied strain has led to superconducting critical temperature enhancement compared to their free-standing counterparts, proving the effectiveness of this biaxial strain method at cryogenic temperatures. Clear quantum oscillations in the magnetoresistance—the Shubnikov–de Haas (SdH) effect—are obtained in both samples. In strained MoTe2, the magnetoresistance exhibits a nearly quadratic dependence on the magnetic field and remains non-saturating even at the highest field, whereas in strained RbV3Sb5, two SdH frequencies showed a substantial enhancement in effective mass values, hinting at a possible enhancement of charge fluctuations. Our results demonstrate that combining biaxial strain and pulsed magnetic field paves the way for studying 2D materials under unprecedented conditions.
doi_str_mv 10.1063/5.0191185
format Article
fullrecord <record><control><sourceid>scitation_doaj_</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0191185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c830dc082b144ae9813872e33cc46525</doaj_id><sourcerecordid>apm</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-8899591c7213bae5086b707e2d4c2d2e7613ae36024c9cc6cb6f5801f211e8723</originalsourceid><addsrcrecordid>eNp9kc1KxDAQgIsoKLoH3yB4U6hmkiZNjyL-geBBBW8hnaYarc2SpKI338E39EnM7op48jSZ5OObyUxR7AI9BCr5kTik0AAosVZsMZCyFJzdr_85bxazGJ8opUA5V43cKoabx6kd3bN__fr47Cy5MCYSH9ENg0nOjznpSevMmzNDGVMwbizTNNqOxGluA_qxmzD5EIkbyXwaYn55MQ-jTQ5J7-zQkWlOkieSktudYqM3GZn9xO3i7uz09uSivLo-vzw5viqRC5ZKpZpGNIA1A94aK6iSbU1ry7oKWcdsLYEbyyVlFTaIElvZC0WhZwBW1YxvF5crb-fNk54H92LCu_bG6eWFDw_ahNzgYDUqTjukirVQVcY2Cng2WM4RKymYyK69lcvH5HQeTLL4mL89WkyaVUzWsCi4v4Iw-BiD7X-LAtWL1Wihf1aT2YMVu3AtZ_wP_A2sXY1_</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Shubnikov–de Haas oscillations of biaxial-strain-tuned superconductors in pulsed magnetic field up to 60 T</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yip, King Yau ; Wang, Lingfei ; Poon, Tsz Fung ; Yu, Kai Ham ; Lam, Siu Tung ; Lai, Kwing To ; Singleton, John ; Balakirev, Fedor F. ; Goh, Swee K.</creator><creatorcontrib>Yip, King Yau ; Wang, Lingfei ; Poon, Tsz Fung ; Yu, Kai Ham ; Lam, Siu Tung ; Lai, Kwing To ; Singleton, John ; Balakirev, Fedor F. ; Goh, Swee K. ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Two-dimensional (2D) materials have gained increasing prominence not only in fundamental research but also in daily applications. However, to fully harness their potential, it is crucial to optimize their properties with an external parameter and track the electronic structure simultaneously. Magnetotransport over a wide magnetic field range is a powerful method to probe the electronic structure and, for metallic 2D materials, quantum oscillations superimposed on the transport signals encode Fermi surface parameters. In this manuscript, we utilize biaxial strain as an external tuning parameter and investigate the effects of strain on the electronic properties of two quasi-2D superconductors, MoTe2 and RbV3Sb5, by measuring their magnetoresistance in pulsed magnetic fields up to 60 T. With a careful selection of insulating substrates, we demonstrate the possibility of both the compressive and tensile biaxial strains imposed on MoTe2 and RbV3Sb5, respectively. For both systems, the applied strain has led to superconducting critical temperature enhancement compared to their free-standing counterparts, proving the effectiveness of this biaxial strain method at cryogenic temperatures. Clear quantum oscillations in the magnetoresistance—the Shubnikov–de Haas (SdH) effect—are obtained in both samples. In strained MoTe2, the magnetoresistance exhibits a nearly quadratic dependence on the magnetic field and remains non-saturating even at the highest field, whereas in strained RbV3Sb5, two SdH frequencies showed a substantial enhancement in effective mass values, hinting at a possible enhancement of charge fluctuations. Our results demonstrate that combining biaxial strain and pulsed magnetic field paves the way for studying 2D materials under unprecedented conditions.</description><identifier>ISSN: 2166-532X</identifier><identifier>EISSN: 2166-532X</identifier><identifier>DOI: 10.1063/5.0191185</identifier><identifier>CODEN: AMPADS</identifier><language>eng</language><publisher>United States: American Institute of Physics (AIP)</publisher><subject>2D materials ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Fermi surface ; High Magnetic Field Science ; Magnetic fields ; Quantum oscillators ; Shubnikov-de Haas effect ; Superconductors</subject><ispartof>APL materials, 2024-02, Vol.12 (2), p.021124-021124-6</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c352t-8899591c7213bae5086b707e2d4c2d2e7613ae36024c9cc6cb6f5801f211e8723</cites><orcidid>0000-0002-0673-0595 ; 0000-0001-6109-6905 ; 0000-0002-3763-1645 ; 0000-0001-9935-202X ; 0000-0003-4550-4838 ; 0000-0003-4359-8519 ; 0000-0003-4887-5140 ; 0000-0002-1431-5025 ; 0000-0002-6265-5446 ; 0000000161096905 ; 000000019935202X ; 0000000214315025 ; 0000000262655446 ; 0000000206730595 ; 0000000237631645 ; 0000000345504838 ; 0000000348875140 ; 0000000343598519</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,865,886,2103,27928,27929</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2426712$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yip, King Yau</creatorcontrib><creatorcontrib>Wang, Lingfei</creatorcontrib><creatorcontrib>Poon, Tsz Fung</creatorcontrib><creatorcontrib>Yu, Kai Ham</creatorcontrib><creatorcontrib>Lam, Siu Tung</creatorcontrib><creatorcontrib>Lai, Kwing To</creatorcontrib><creatorcontrib>Singleton, John</creatorcontrib><creatorcontrib>Balakirev, Fedor F.</creatorcontrib><creatorcontrib>Goh, Swee K.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Shubnikov–de Haas oscillations of biaxial-strain-tuned superconductors in pulsed magnetic field up to 60 T</title><title>APL materials</title><description>Two-dimensional (2D) materials have gained increasing prominence not only in fundamental research but also in daily applications. However, to fully harness their potential, it is crucial to optimize their properties with an external parameter and track the electronic structure simultaneously. Magnetotransport over a wide magnetic field range is a powerful method to probe the electronic structure and, for metallic 2D materials, quantum oscillations superimposed on the transport signals encode Fermi surface parameters. In this manuscript, we utilize biaxial strain as an external tuning parameter and investigate the effects of strain on the electronic properties of two quasi-2D superconductors, MoTe2 and RbV3Sb5, by measuring their magnetoresistance in pulsed magnetic fields up to 60 T. With a careful selection of insulating substrates, we demonstrate the possibility of both the compressive and tensile biaxial strains imposed on MoTe2 and RbV3Sb5, respectively. For both systems, the applied strain has led to superconducting critical temperature enhancement compared to their free-standing counterparts, proving the effectiveness of this biaxial strain method at cryogenic temperatures. Clear quantum oscillations in the magnetoresistance—the Shubnikov–de Haas (SdH) effect—are obtained in both samples. In strained MoTe2, the magnetoresistance exhibits a nearly quadratic dependence on the magnetic field and remains non-saturating even at the highest field, whereas in strained RbV3Sb5, two SdH frequencies showed a substantial enhancement in effective mass values, hinting at a possible enhancement of charge fluctuations. Our results demonstrate that combining biaxial strain and pulsed magnetic field paves the way for studying 2D materials under unprecedented conditions.</description><subject>2D materials</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Fermi surface</subject><subject>High Magnetic Field Science</subject><subject>Magnetic fields</subject><subject>Quantum oscillators</subject><subject>Shubnikov-de Haas effect</subject><subject>Superconductors</subject><issn>2166-532X</issn><issn>2166-532X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kc1KxDAQgIsoKLoH3yB4U6hmkiZNjyL-geBBBW8hnaYarc2SpKI338E39EnM7op48jSZ5OObyUxR7AI9BCr5kTik0AAosVZsMZCyFJzdr_85bxazGJ8opUA5V43cKoabx6kd3bN__fr47Cy5MCYSH9ENg0nOjznpSevMmzNDGVMwbizTNNqOxGluA_qxmzD5EIkbyXwaYn55MQ-jTQ5J7-zQkWlOkieSktudYqM3GZn9xO3i7uz09uSivLo-vzw5viqRC5ZKpZpGNIA1A94aK6iSbU1ry7oKWcdsLYEbyyVlFTaIElvZC0WhZwBW1YxvF5crb-fNk54H92LCu_bG6eWFDw_ahNzgYDUqTjukirVQVcY2Cng2WM4RKymYyK69lcvH5HQeTLL4mL89WkyaVUzWsCi4v4Iw-BiD7X-LAtWL1Wihf1aT2YMVu3AtZ_wP_A2sXY1_</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Yip, King Yau</creator><creator>Wang, Lingfei</creator><creator>Poon, Tsz Fung</creator><creator>Yu, Kai Ham</creator><creator>Lam, Siu Tung</creator><creator>Lai, Kwing To</creator><creator>Singleton, John</creator><creator>Balakirev, Fedor F.</creator><creator>Goh, Swee K.</creator><general>American Institute of Physics (AIP)</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0673-0595</orcidid><orcidid>https://orcid.org/0000-0001-6109-6905</orcidid><orcidid>https://orcid.org/0000-0002-3763-1645</orcidid><orcidid>https://orcid.org/0000-0001-9935-202X</orcidid><orcidid>https://orcid.org/0000-0003-4550-4838</orcidid><orcidid>https://orcid.org/0000-0003-4359-8519</orcidid><orcidid>https://orcid.org/0000-0003-4887-5140</orcidid><orcidid>https://orcid.org/0000-0002-1431-5025</orcidid><orcidid>https://orcid.org/0000-0002-6265-5446</orcidid><orcidid>https://orcid.org/0000000161096905</orcidid><orcidid>https://orcid.org/000000019935202X</orcidid><orcidid>https://orcid.org/0000000214315025</orcidid><orcidid>https://orcid.org/0000000262655446</orcidid><orcidid>https://orcid.org/0000000206730595</orcidid><orcidid>https://orcid.org/0000000237631645</orcidid><orcidid>https://orcid.org/0000000345504838</orcidid><orcidid>https://orcid.org/0000000348875140</orcidid><orcidid>https://orcid.org/0000000343598519</orcidid></search><sort><creationdate>20240201</creationdate><title>Shubnikov–de Haas oscillations of biaxial-strain-tuned superconductors in pulsed magnetic field up to 60 T</title><author>Yip, King Yau ; Wang, Lingfei ; Poon, Tsz Fung ; Yu, Kai Ham ; Lam, Siu Tung ; Lai, Kwing To ; Singleton, John ; Balakirev, Fedor F. ; Goh, Swee K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-8899591c7213bae5086b707e2d4c2d2e7613ae36024c9cc6cb6f5801f211e8723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>2D materials</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Fermi surface</topic><topic>High Magnetic Field Science</topic><topic>Magnetic fields</topic><topic>Quantum oscillators</topic><topic>Shubnikov-de Haas effect</topic><topic>Superconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yip, King Yau</creatorcontrib><creatorcontrib>Wang, Lingfei</creatorcontrib><creatorcontrib>Poon, Tsz Fung</creatorcontrib><creatorcontrib>Yu, Kai Ham</creatorcontrib><creatorcontrib>Lam, Siu Tung</creatorcontrib><creatorcontrib>Lai, Kwing To</creatorcontrib><creatorcontrib>Singleton, John</creatorcontrib><creatorcontrib>Balakirev, Fedor F.</creatorcontrib><creatorcontrib>Goh, Swee K.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>APL materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yip, King Yau</au><au>Wang, Lingfei</au><au>Poon, Tsz Fung</au><au>Yu, Kai Ham</au><au>Lam, Siu Tung</au><au>Lai, Kwing To</au><au>Singleton, John</au><au>Balakirev, Fedor F.</au><au>Goh, Swee K.</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shubnikov–de Haas oscillations of biaxial-strain-tuned superconductors in pulsed magnetic field up to 60 T</atitle><jtitle>APL materials</jtitle><date>2024-02-01</date><risdate>2024</risdate><volume>12</volume><issue>2</issue><spage>021124</spage><epage>021124-6</epage><pages>021124-021124-6</pages><issn>2166-532X</issn><eissn>2166-532X</eissn><coden>AMPADS</coden><abstract>Two-dimensional (2D) materials have gained increasing prominence not only in fundamental research but also in daily applications. However, to fully harness their potential, it is crucial to optimize their properties with an external parameter and track the electronic structure simultaneously. Magnetotransport over a wide magnetic field range is a powerful method to probe the electronic structure and, for metallic 2D materials, quantum oscillations superimposed on the transport signals encode Fermi surface parameters. In this manuscript, we utilize biaxial strain as an external tuning parameter and investigate the effects of strain on the electronic properties of two quasi-2D superconductors, MoTe2 and RbV3Sb5, by measuring their magnetoresistance in pulsed magnetic fields up to 60 T. With a careful selection of insulating substrates, we demonstrate the possibility of both the compressive and tensile biaxial strains imposed on MoTe2 and RbV3Sb5, respectively. For both systems, the applied strain has led to superconducting critical temperature enhancement compared to their free-standing counterparts, proving the effectiveness of this biaxial strain method at cryogenic temperatures. Clear quantum oscillations in the magnetoresistance—the Shubnikov–de Haas (SdH) effect—are obtained in both samples. In strained MoTe2, the magnetoresistance exhibits a nearly quadratic dependence on the magnetic field and remains non-saturating even at the highest field, whereas in strained RbV3Sb5, two SdH frequencies showed a substantial enhancement in effective mass values, hinting at a possible enhancement of charge fluctuations. Our results demonstrate that combining biaxial strain and pulsed magnetic field paves the way for studying 2D materials under unprecedented conditions.</abstract><cop>United States</cop><pub>American Institute of Physics (AIP)</pub><doi>10.1063/5.0191185</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0673-0595</orcidid><orcidid>https://orcid.org/0000-0001-6109-6905</orcidid><orcidid>https://orcid.org/0000-0002-3763-1645</orcidid><orcidid>https://orcid.org/0000-0001-9935-202X</orcidid><orcidid>https://orcid.org/0000-0003-4550-4838</orcidid><orcidid>https://orcid.org/0000-0003-4359-8519</orcidid><orcidid>https://orcid.org/0000-0003-4887-5140</orcidid><orcidid>https://orcid.org/0000-0002-1431-5025</orcidid><orcidid>https://orcid.org/0000-0002-6265-5446</orcidid><orcidid>https://orcid.org/0000000161096905</orcidid><orcidid>https://orcid.org/000000019935202X</orcidid><orcidid>https://orcid.org/0000000214315025</orcidid><orcidid>https://orcid.org/0000000262655446</orcidid><orcidid>https://orcid.org/0000000206730595</orcidid><orcidid>https://orcid.org/0000000237631645</orcidid><orcidid>https://orcid.org/0000000345504838</orcidid><orcidid>https://orcid.org/0000000348875140</orcidid><orcidid>https://orcid.org/0000000343598519</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2166-532X
ispartof APL materials, 2024-02, Vol.12 (2), p.021124-021124-6
issn 2166-532X
2166-532X
language eng
recordid cdi_scitation_primary_10_1063_5_0191185
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects 2D materials
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Fermi surface
High Magnetic Field Science
Magnetic fields
Quantum oscillators
Shubnikov-de Haas effect
Superconductors
title Shubnikov–de Haas oscillations of biaxial-strain-tuned superconductors in pulsed magnetic field up to 60 T
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T04%3A18%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shubnikov%E2%80%93de%20Haas%20oscillations%20of%20biaxial-strain-tuned%20superconductors%20in%20pulsed%20magnetic%20field%20up%20to%2060%20T&rft.jtitle=APL%20materials&rft.au=Yip,%20King%20Yau&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2024-02-01&rft.volume=12&rft.issue=2&rft.spage=021124&rft.epage=021124-6&rft.pages=021124-021124-6&rft.issn=2166-532X&rft.eissn=2166-532X&rft.coden=AMPADS&rft_id=info:doi/10.1063/5.0191185&rft_dat=%3Cscitation_doaj_%3Eapm%3C/scitation_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_c830dc082b144ae9813872e33cc46525&rfr_iscdi=true