A high temperature engine materials test facility

Gas turbine engines subject materials to extreme conditions. Their high temperature materials and co-developed coatings must survive combustion gas temperatures currently approaching 1800 °C, large thermal gradients, severe thermal shock, and static and fatigue inducing applied stresses, all the whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2024-04, Vol.95 (4)
Hauptverfasser: Shelton, Prabha H., Wadley, Haydn N. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Review of scientific instruments
container_volume 95
creator Shelton, Prabha H.
Wadley, Haydn N. G.
description Gas turbine engines subject materials to extreme conditions. Their high temperature materials and co-developed coatings must survive combustion gas temperatures currently approaching 1800 °C, large thermal gradients, severe thermal shock, and static and fatigue inducing applied stresses, all the while operating in highly reactive, high-pressure, high-speed combustion gas flows containing significant partial pressures of water vapor, oxygen, and other reactive species for many tens of thousands of hours. We describe the design and development of a test facility for the study of materials under individual and combinations of test parameters similar to those experienced within legacy and future engines. A hydraulic load frame capable of applying static or cyclic tension-compression stresses up to 400 MPa to flat-dog bone-shaped test specimens is integrated within an environmental test chamber capable of sustaining gas pressures from 0.1 to 1.2 MPa (1–12 atm). An adjustable 0.1–2 kW power CO2 laser whose 10.6 µm wavelength radiation is strongly absorbed by ceramic coating materials is used to heat sample surfaces to temperatures of 1800 °C and above, while rear surface air jet cooling establishes through-thickness thermal gradients. Rapid laser heating in conjunction with transiently applied front and/or rear-side air cooling is used to create hot or cold thermal shock effects. This is accompanied by the impingement of a high pressure (up to 1.3 MPa) reactive gas jet upon the sample with speeds up to 300 m/s by preheating dry air, mixing it with steam to the desired humidity, heating to 850 °C, and then expanding it through a converging nozzle. Thermal imaging pyrometers measure specimen front and back surface temperature fields, while environmental test chamber view ports permit digital image correlation and strain mapping.
doi_str_mv 10.1063/5.0190903
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0190903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3047942813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-69e55d4685e16515affffd41abbc6557573e9b6c4a9dce4ac79c418ceb1982f43</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgiq3VhS8gA25UmJpMLpMsS_EGBTe6HjKZM23KXGqSWfTtTZnqwoVnE0g-fk5-hK4JnhMs6COfY6KwwvQETQmWKs1FRk_RFGPKUpEzOUEX3m9xHE7IOZpQKYQUik4RWSQbu94kAdodOB0GBwl0a9tB0uoAzurGx0cfklob29iwv0RndbyEq-M5Q5_PTx_L13T1_vK2XKxSQxkNqVDAecWE5EAEJ1zXcSpGdFkawXnOcwqqFIZpVRlg2uTKMCINlETJrGZ0hu7G3J3rv4a4QdFab6BpdAf94AuKWa5YJgmN9PYP3faD6-J2BxX_KTHPoroflXG99w7qYudsq92-ILg49Fjw4thjtDfHxKFsofqVP8VF8DACb2zQwfbdP2nfS6t4jQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3046938052</pqid></control><display><type>article</type><title>A high temperature engine materials test facility</title><source>AIP Journals Complete</source><creator>Shelton, Prabha H. ; Wadley, Haydn N. G.</creator><creatorcontrib>Shelton, Prabha H. ; Wadley, Haydn N. G.</creatorcontrib><description>Gas turbine engines subject materials to extreme conditions. Their high temperature materials and co-developed coatings must survive combustion gas temperatures currently approaching 1800 °C, large thermal gradients, severe thermal shock, and static and fatigue inducing applied stresses, all the while operating in highly reactive, high-pressure, high-speed combustion gas flows containing significant partial pressures of water vapor, oxygen, and other reactive species for many tens of thousands of hours. We describe the design and development of a test facility for the study of materials under individual and combinations of test parameters similar to those experienced within legacy and future engines. A hydraulic load frame capable of applying static or cyclic tension-compression stresses up to 400 MPa to flat-dog bone-shaped test specimens is integrated within an environmental test chamber capable of sustaining gas pressures from 0.1 to 1.2 MPa (1–12 atm). An adjustable 0.1–2 kW power CO2 laser whose 10.6 µm wavelength radiation is strongly absorbed by ceramic coating materials is used to heat sample surfaces to temperatures of 1800 °C and above, while rear surface air jet cooling establishes through-thickness thermal gradients. Rapid laser heating in conjunction with transiently applied front and/or rear-side air cooling is used to create hot or cold thermal shock effects. This is accompanied by the impingement of a high pressure (up to 1.3 MPa) reactive gas jet upon the sample with speeds up to 300 m/s by preheating dry air, mixing it with steam to the desired humidity, heating to 850 °C, and then expanding it through a converging nozzle. Thermal imaging pyrometers measure specimen front and back surface temperature fields, while environmental test chamber view ports permit digital image correlation and strain mapping.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/5.0190903</identifier><identifier>PMID: 38668693</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Air cooling ; Air jets ; Carbon dioxide ; Carbon dioxide lasers ; Ceramic coatings ; Combustion ; Cyclic loads ; Digital imaging ; Engine materials ; Environmental testing ; Gas flow ; Gas jets ; Gas turbine engines ; Heating ; High pressure ; High temperature ; Hydraulic loading ; Laser beam heating ; Materials testing ; Stresses ; Temperature gradients ; Test chambers ; Test facilities ; Thermal imaging ; Thermal shock ; Water vapor</subject><ispartof>Review of scientific instruments, 2024-04, Vol.95 (4)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c343t-69e55d4685e16515affffd41abbc6557573e9b6c4a9dce4ac79c418ceb1982f43</cites><orcidid>0000-0001-8449-9547 ; 0000-0001-7803-1286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/5.0190903$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,778,782,792,4500,27911,27912,76139</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38668693$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shelton, Prabha H.</creatorcontrib><creatorcontrib>Wadley, Haydn N. G.</creatorcontrib><title>A high temperature engine materials test facility</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>Gas turbine engines subject materials to extreme conditions. Their high temperature materials and co-developed coatings must survive combustion gas temperatures currently approaching 1800 °C, large thermal gradients, severe thermal shock, and static and fatigue inducing applied stresses, all the while operating in highly reactive, high-pressure, high-speed combustion gas flows containing significant partial pressures of water vapor, oxygen, and other reactive species for many tens of thousands of hours. We describe the design and development of a test facility for the study of materials under individual and combinations of test parameters similar to those experienced within legacy and future engines. A hydraulic load frame capable of applying static or cyclic tension-compression stresses up to 400 MPa to flat-dog bone-shaped test specimens is integrated within an environmental test chamber capable of sustaining gas pressures from 0.1 to 1.2 MPa (1–12 atm). An adjustable 0.1–2 kW power CO2 laser whose 10.6 µm wavelength radiation is strongly absorbed by ceramic coating materials is used to heat sample surfaces to temperatures of 1800 °C and above, while rear surface air jet cooling establishes through-thickness thermal gradients. Rapid laser heating in conjunction with transiently applied front and/or rear-side air cooling is used to create hot or cold thermal shock effects. This is accompanied by the impingement of a high pressure (up to 1.3 MPa) reactive gas jet upon the sample with speeds up to 300 m/s by preheating dry air, mixing it with steam to the desired humidity, heating to 850 °C, and then expanding it through a converging nozzle. Thermal imaging pyrometers measure specimen front and back surface temperature fields, while environmental test chamber view ports permit digital image correlation and strain mapping.</description><subject>Air cooling</subject><subject>Air jets</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide lasers</subject><subject>Ceramic coatings</subject><subject>Combustion</subject><subject>Cyclic loads</subject><subject>Digital imaging</subject><subject>Engine materials</subject><subject>Environmental testing</subject><subject>Gas flow</subject><subject>Gas jets</subject><subject>Gas turbine engines</subject><subject>Heating</subject><subject>High pressure</subject><subject>High temperature</subject><subject>Hydraulic loading</subject><subject>Laser beam heating</subject><subject>Materials testing</subject><subject>Stresses</subject><subject>Temperature gradients</subject><subject>Test chambers</subject><subject>Test facilities</subject><subject>Thermal imaging</subject><subject>Thermal shock</subject><subject>Water vapor</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgiq3VhS8gA25UmJpMLpMsS_EGBTe6HjKZM23KXGqSWfTtTZnqwoVnE0g-fk5-hK4JnhMs6COfY6KwwvQETQmWKs1FRk_RFGPKUpEzOUEX3m9xHE7IOZpQKYQUik4RWSQbu94kAdodOB0GBwl0a9tB0uoAzurGx0cfklob29iwv0RndbyEq-M5Q5_PTx_L13T1_vK2XKxSQxkNqVDAecWE5EAEJ1zXcSpGdFkawXnOcwqqFIZpVRlg2uTKMCINlETJrGZ0hu7G3J3rv4a4QdFab6BpdAf94AuKWa5YJgmN9PYP3faD6-J2BxX_KTHPoroflXG99w7qYudsq92-ILg49Fjw4thjtDfHxKFsofqVP8VF8DACb2zQwfbdP2nfS6t4jQ</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Shelton, Prabha H.</creator><creator>Wadley, Haydn N. G.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8449-9547</orcidid><orcidid>https://orcid.org/0000-0001-7803-1286</orcidid></search><sort><creationdate>20240401</creationdate><title>A high temperature engine materials test facility</title><author>Shelton, Prabha H. ; Wadley, Haydn N. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-69e55d4685e16515affffd41abbc6557573e9b6c4a9dce4ac79c418ceb1982f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air cooling</topic><topic>Air jets</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide lasers</topic><topic>Ceramic coatings</topic><topic>Combustion</topic><topic>Cyclic loads</topic><topic>Digital imaging</topic><topic>Engine materials</topic><topic>Environmental testing</topic><topic>Gas flow</topic><topic>Gas jets</topic><topic>Gas turbine engines</topic><topic>Heating</topic><topic>High pressure</topic><topic>High temperature</topic><topic>Hydraulic loading</topic><topic>Laser beam heating</topic><topic>Materials testing</topic><topic>Stresses</topic><topic>Temperature gradients</topic><topic>Test chambers</topic><topic>Test facilities</topic><topic>Thermal imaging</topic><topic>Thermal shock</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shelton, Prabha H.</creatorcontrib><creatorcontrib>Wadley, Haydn N. G.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shelton, Prabha H.</au><au>Wadley, Haydn N. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A high temperature engine materials test facility</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>95</volume><issue>4</issue><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>Gas turbine engines subject materials to extreme conditions. Their high temperature materials and co-developed coatings must survive combustion gas temperatures currently approaching 1800 °C, large thermal gradients, severe thermal shock, and static and fatigue inducing applied stresses, all the while operating in highly reactive, high-pressure, high-speed combustion gas flows containing significant partial pressures of water vapor, oxygen, and other reactive species for many tens of thousands of hours. We describe the design and development of a test facility for the study of materials under individual and combinations of test parameters similar to those experienced within legacy and future engines. A hydraulic load frame capable of applying static or cyclic tension-compression stresses up to 400 MPa to flat-dog bone-shaped test specimens is integrated within an environmental test chamber capable of sustaining gas pressures from 0.1 to 1.2 MPa (1–12 atm). An adjustable 0.1–2 kW power CO2 laser whose 10.6 µm wavelength radiation is strongly absorbed by ceramic coating materials is used to heat sample surfaces to temperatures of 1800 °C and above, while rear surface air jet cooling establishes through-thickness thermal gradients. Rapid laser heating in conjunction with transiently applied front and/or rear-side air cooling is used to create hot or cold thermal shock effects. This is accompanied by the impingement of a high pressure (up to 1.3 MPa) reactive gas jet upon the sample with speeds up to 300 m/s by preheating dry air, mixing it with steam to the desired humidity, heating to 850 °C, and then expanding it through a converging nozzle. Thermal imaging pyrometers measure specimen front and back surface temperature fields, while environmental test chamber view ports permit digital image correlation and strain mapping.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>38668693</pmid><doi>10.1063/5.0190903</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-8449-9547</orcidid><orcidid>https://orcid.org/0000-0001-7803-1286</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2024-04, Vol.95 (4)
issn 0034-6748
1089-7623
language eng
recordid cdi_scitation_primary_10_1063_5_0190903
source AIP Journals Complete
subjects Air cooling
Air jets
Carbon dioxide
Carbon dioxide lasers
Ceramic coatings
Combustion
Cyclic loads
Digital imaging
Engine materials
Environmental testing
Gas flow
Gas jets
Gas turbine engines
Heating
High pressure
High temperature
Hydraulic loading
Laser beam heating
Materials testing
Stresses
Temperature gradients
Test chambers
Test facilities
Thermal imaging
Thermal shock
Water vapor
title A high temperature engine materials test facility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A57%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20high%20temperature%20engine%20materials%20test%20facility&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Shelton,%20Prabha%20H.&rft.date=2024-04-01&rft.volume=95&rft.issue=4&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/5.0190903&rft_dat=%3Cproquest_scita%3E3047942813%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3046938052&rft_id=info:pmid/38668693&rfr_iscdi=true