Harnessing ion beam erosion engineering for controlled self-assembly and tunable magnetic anisotropy in epitaxial films
The engineering of the surface morphology and the structure of the thin film is one of the essential technological assets for regulating the physical properties and functionalities of thin film-based devices. This study presents an easy and handy approach to tailor the surface structure of epitaxial...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2024-07, Vol.136 (1) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 136 |
creator | Bera, Anup Kumar Jamal, Md. Shahid Khanderao, Avinash Ganesh Singh, Sharanjeet Kumar, Dileep |
description | The engineering of the surface morphology and the structure of the thin film is one of the essential technological assets for regulating the physical properties and functionalities of thin film-based devices. This study presents an easy and handy approach to tailor the surface structure of epitaxial thin films utilizing low-energy ion beam. Here, we investigate the evolution of the surface structure and magnetic anisotropy (MA) in epitaxial Fe/MgO (001) model systems subjected to multiple cycles of ion beam erosion (IBE) after thin film growth. The growth of Fe film occurs in the form of three–dimensional islands and exhibits intrinsic biaxial MA. Following a few cycles of IBE, an induced uniaxial magnetic anisotropy leads to a split in the hysteresis loop, and the film displays almost uniaxial magnetic switching behavior. More distinctly, we present a clear and conclusive evidence of (2 × 2) reconstruction of the Fe surface due to the atomic rearrangement by IBE. Furthermore, 57Fe isotope sensitive nuclear resonance scattering measurement provides insight into the depth-resolved magnetic information due to the modified surface topography. We also demonstrate that thermal annealing can reversibly tune the surface reconstruction and induced UMA. The feasibility of the IBE technique by adequately selecting IBE parameters for surface structure modification has been highlighted apart from conventional tailoring of the morphology for the tuning of UMA and introduces a new dimension to our understanding of self-assembled surface morphology evolution by IBE. |
doi_str_mv | 10.1063/5.0190202 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0190202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3074840964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-b8c0f7670c5f7a45f18c2761b166f59f5181a4d7a75ab935f5d9d73b50d1dec53</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKsH_0HAk8LWye5mkxylWCsUvOh5yWaTkpJN1mSL9t-b0p49DTPv4w3vIXRPYEGgqZ7pAoiAEsoLNCPARcEohUs0AyhJwQUT1-gmpR0AIbwSM_SzltHrlKzfYhs87rQcsI4hHRftt9ZrHY-iCRGr4KcYnNM9TtqZQqakh84dsPQ9nvZedk7jQW69nqzKR5tC5scDttlrtJP8tdJhY92QbtGVkS7pu_Oco6_V6-dyXWw-3t6XL5tCEV5ORccVGNYwUNQwWVNDuCpZQzrSNIYKQwknsu6ZZFR2oqKG9qJnVUehJ71WtJqjh5PvGMP3Xqep3YV99PllWwGreQ2iqTP1eKJUTp6iNu0Y7SDjoSXQHnttaXvuNbNPJzapnGjKPf0D_wHYp3mW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3074840964</pqid></control><display><type>article</type><title>Harnessing ion beam erosion engineering for controlled self-assembly and tunable magnetic anisotropy in epitaxial films</title><source>Alma/SFX Local Collection</source><creator>Bera, Anup Kumar ; Jamal, Md. Shahid ; Khanderao, Avinash Ganesh ; Singh, Sharanjeet ; Kumar, Dileep</creator><creatorcontrib>Bera, Anup Kumar ; Jamal, Md. Shahid ; Khanderao, Avinash Ganesh ; Singh, Sharanjeet ; Kumar, Dileep</creatorcontrib><description>The engineering of the surface morphology and the structure of the thin film is one of the essential technological assets for regulating the physical properties and functionalities of thin film-based devices. This study presents an easy and handy approach to tailor the surface structure of epitaxial thin films utilizing low-energy ion beam. Here, we investigate the evolution of the surface structure and magnetic anisotropy (MA) in epitaxial Fe/MgO (001) model systems subjected to multiple cycles of ion beam erosion (IBE) after thin film growth. The growth of Fe film occurs in the form of three–dimensional islands and exhibits intrinsic biaxial MA. Following a few cycles of IBE, an induced uniaxial magnetic anisotropy leads to a split in the hysteresis loop, and the film displays almost uniaxial magnetic switching behavior. More distinctly, we present a clear and conclusive evidence of (2 × 2) reconstruction of the Fe surface due to the atomic rearrangement by IBE. Furthermore, 57Fe isotope sensitive nuclear resonance scattering measurement provides insight into the depth-resolved magnetic information due to the modified surface topography. We also demonstrate that thermal annealing can reversibly tune the surface reconstruction and induced UMA. The feasibility of the IBE technique by adequately selecting IBE parameters for surface structure modification has been highlighted apart from conventional tailoring of the morphology for the tuning of UMA and introduces a new dimension to our understanding of self-assembled surface morphology evolution by IBE.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0190202</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Anisotropy ; Epitaxy ; Erosion control ; Evolution ; Film growth ; Hysteresis loops ; Ion beams ; Magnetic anisotropy ; Magnetic switching ; Morphology ; Parameter modification ; Physical properties ; Reconstruction ; Resonance scattering ; Self-assembly ; Surface structure ; Thin films</subject><ispartof>Journal of applied physics, 2024-07, Vol.136 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-b8c0f7670c5f7a45f18c2761b166f59f5181a4d7a75ab935f5d9d73b50d1dec53</cites><orcidid>0000-0002-7834-4773 ; 0000-0002-4782-167X ; 0000-0003-3471-9833 ; 0000-0001-6368-5009 ; 0009-0006-6424-5965</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bera, Anup Kumar</creatorcontrib><creatorcontrib>Jamal, Md. Shahid</creatorcontrib><creatorcontrib>Khanderao, Avinash Ganesh</creatorcontrib><creatorcontrib>Singh, Sharanjeet</creatorcontrib><creatorcontrib>Kumar, Dileep</creatorcontrib><title>Harnessing ion beam erosion engineering for controlled self-assembly and tunable magnetic anisotropy in epitaxial films</title><title>Journal of applied physics</title><description>The engineering of the surface morphology and the structure of the thin film is one of the essential technological assets for regulating the physical properties and functionalities of thin film-based devices. This study presents an easy and handy approach to tailor the surface structure of epitaxial thin films utilizing low-energy ion beam. Here, we investigate the evolution of the surface structure and magnetic anisotropy (MA) in epitaxial Fe/MgO (001) model systems subjected to multiple cycles of ion beam erosion (IBE) after thin film growth. The growth of Fe film occurs in the form of three–dimensional islands and exhibits intrinsic biaxial MA. Following a few cycles of IBE, an induced uniaxial magnetic anisotropy leads to a split in the hysteresis loop, and the film displays almost uniaxial magnetic switching behavior. More distinctly, we present a clear and conclusive evidence of (2 × 2) reconstruction of the Fe surface due to the atomic rearrangement by IBE. Furthermore, 57Fe isotope sensitive nuclear resonance scattering measurement provides insight into the depth-resolved magnetic information due to the modified surface topography. We also demonstrate that thermal annealing can reversibly tune the surface reconstruction and induced UMA. The feasibility of the IBE technique by adequately selecting IBE parameters for surface structure modification has been highlighted apart from conventional tailoring of the morphology for the tuning of UMA and introduces a new dimension to our understanding of self-assembled surface morphology evolution by IBE.</description><subject>Anisotropy</subject><subject>Epitaxy</subject><subject>Erosion control</subject><subject>Evolution</subject><subject>Film growth</subject><subject>Hysteresis loops</subject><subject>Ion beams</subject><subject>Magnetic anisotropy</subject><subject>Magnetic switching</subject><subject>Morphology</subject><subject>Parameter modification</subject><subject>Physical properties</subject><subject>Reconstruction</subject><subject>Resonance scattering</subject><subject>Self-assembly</subject><subject>Surface structure</subject><subject>Thin films</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKsH_0HAk8LWye5mkxylWCsUvOh5yWaTkpJN1mSL9t-b0p49DTPv4w3vIXRPYEGgqZ7pAoiAEsoLNCPARcEohUs0AyhJwQUT1-gmpR0AIbwSM_SzltHrlKzfYhs87rQcsI4hHRftt9ZrHY-iCRGr4KcYnNM9TtqZQqakh84dsPQ9nvZedk7jQW69nqzKR5tC5scDttlrtJP8tdJhY92QbtGVkS7pu_Oco6_V6-dyXWw-3t6XL5tCEV5ORccVGNYwUNQwWVNDuCpZQzrSNIYKQwknsu6ZZFR2oqKG9qJnVUehJ71WtJqjh5PvGMP3Xqep3YV99PllWwGreQ2iqTP1eKJUTp6iNu0Y7SDjoSXQHnttaXvuNbNPJzapnGjKPf0D_wHYp3mW</recordid><startdate>20240707</startdate><enddate>20240707</enddate><creator>Bera, Anup Kumar</creator><creator>Jamal, Md. Shahid</creator><creator>Khanderao, Avinash Ganesh</creator><creator>Singh, Sharanjeet</creator><creator>Kumar, Dileep</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7834-4773</orcidid><orcidid>https://orcid.org/0000-0002-4782-167X</orcidid><orcidid>https://orcid.org/0000-0003-3471-9833</orcidid><orcidid>https://orcid.org/0000-0001-6368-5009</orcidid><orcidid>https://orcid.org/0009-0006-6424-5965</orcidid></search><sort><creationdate>20240707</creationdate><title>Harnessing ion beam erosion engineering for controlled self-assembly and tunable magnetic anisotropy in epitaxial films</title><author>Bera, Anup Kumar ; Jamal, Md. Shahid ; Khanderao, Avinash Ganesh ; Singh, Sharanjeet ; Kumar, Dileep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-b8c0f7670c5f7a45f18c2761b166f59f5181a4d7a75ab935f5d9d73b50d1dec53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anisotropy</topic><topic>Epitaxy</topic><topic>Erosion control</topic><topic>Evolution</topic><topic>Film growth</topic><topic>Hysteresis loops</topic><topic>Ion beams</topic><topic>Magnetic anisotropy</topic><topic>Magnetic switching</topic><topic>Morphology</topic><topic>Parameter modification</topic><topic>Physical properties</topic><topic>Reconstruction</topic><topic>Resonance scattering</topic><topic>Self-assembly</topic><topic>Surface structure</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bera, Anup Kumar</creatorcontrib><creatorcontrib>Jamal, Md. Shahid</creatorcontrib><creatorcontrib>Khanderao, Avinash Ganesh</creatorcontrib><creatorcontrib>Singh, Sharanjeet</creatorcontrib><creatorcontrib>Kumar, Dileep</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bera, Anup Kumar</au><au>Jamal, Md. Shahid</au><au>Khanderao, Avinash Ganesh</au><au>Singh, Sharanjeet</au><au>Kumar, Dileep</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harnessing ion beam erosion engineering for controlled self-assembly and tunable magnetic anisotropy in epitaxial films</atitle><jtitle>Journal of applied physics</jtitle><date>2024-07-07</date><risdate>2024</risdate><volume>136</volume><issue>1</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The engineering of the surface morphology and the structure of the thin film is one of the essential technological assets for regulating the physical properties and functionalities of thin film-based devices. This study presents an easy and handy approach to tailor the surface structure of epitaxial thin films utilizing low-energy ion beam. Here, we investigate the evolution of the surface structure and magnetic anisotropy (MA) in epitaxial Fe/MgO (001) model systems subjected to multiple cycles of ion beam erosion (IBE) after thin film growth. The growth of Fe film occurs in the form of three–dimensional islands and exhibits intrinsic biaxial MA. Following a few cycles of IBE, an induced uniaxial magnetic anisotropy leads to a split in the hysteresis loop, and the film displays almost uniaxial magnetic switching behavior. More distinctly, we present a clear and conclusive evidence of (2 × 2) reconstruction of the Fe surface due to the atomic rearrangement by IBE. Furthermore, 57Fe isotope sensitive nuclear resonance scattering measurement provides insight into the depth-resolved magnetic information due to the modified surface topography. We also demonstrate that thermal annealing can reversibly tune the surface reconstruction and induced UMA. The feasibility of the IBE technique by adequately selecting IBE parameters for surface structure modification has been highlighted apart from conventional tailoring of the morphology for the tuning of UMA and introduces a new dimension to our understanding of self-assembled surface morphology evolution by IBE.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0190202</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7834-4773</orcidid><orcidid>https://orcid.org/0000-0002-4782-167X</orcidid><orcidid>https://orcid.org/0000-0003-3471-9833</orcidid><orcidid>https://orcid.org/0000-0001-6368-5009</orcidid><orcidid>https://orcid.org/0009-0006-6424-5965</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2024-07, Vol.136 (1) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0190202 |
source | Alma/SFX Local Collection |
subjects | Anisotropy Epitaxy Erosion control Evolution Film growth Hysteresis loops Ion beams Magnetic anisotropy Magnetic switching Morphology Parameter modification Physical properties Reconstruction Resonance scattering Self-assembly Surface structure Thin films |
title | Harnessing ion beam erosion engineering for controlled self-assembly and tunable magnetic anisotropy in epitaxial films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A38%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harnessing%20ion%20beam%20erosion%20engineering%20for%20controlled%20self-assembly%20and%20tunable%20magnetic%20anisotropy%20in%20epitaxial%20films&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Bera,%20Anup%20Kumar&rft.date=2024-07-07&rft.volume=136&rft.issue=1&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0190202&rft_dat=%3Cproquest_scita%3E3074840964%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3074840964&rft_id=info:pmid/&rfr_iscdi=true |