Harnessing ion beam erosion engineering for controlled self-assembly and tunable magnetic anisotropy in epitaxial films

The engineering of the surface morphology and the structure of the thin film is one of the essential technological assets for regulating the physical properties and functionalities of thin film-based devices. This study presents an easy and handy approach to tailor the surface structure of epitaxial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2024-07, Vol.136 (1)
Hauptverfasser: Bera, Anup Kumar, Jamal, Md. Shahid, Khanderao, Avinash Ganesh, Singh, Sharanjeet, Kumar, Dileep
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Journal of applied physics
container_volume 136
creator Bera, Anup Kumar
Jamal, Md. Shahid
Khanderao, Avinash Ganesh
Singh, Sharanjeet
Kumar, Dileep
description The engineering of the surface morphology and the structure of the thin film is one of the essential technological assets for regulating the physical properties and functionalities of thin film-based devices. This study presents an easy and handy approach to tailor the surface structure of epitaxial thin films utilizing low-energy ion beam. Here, we investigate the evolution of the surface structure and magnetic anisotropy (MA) in epitaxial Fe/MgO (001) model systems subjected to multiple cycles of ion beam erosion (IBE) after thin film growth. The growth of Fe film occurs in the form of three–dimensional islands and exhibits intrinsic biaxial MA. Following a few cycles of IBE, an induced uniaxial magnetic anisotropy leads to a split in the hysteresis loop, and the film displays almost uniaxial magnetic switching behavior. More distinctly, we present a clear and conclusive evidence of (2 × 2) reconstruction of the Fe surface due to the atomic rearrangement by IBE. Furthermore, 57Fe isotope sensitive nuclear resonance scattering measurement provides insight into the depth-resolved magnetic information due to the modified surface topography. We also demonstrate that thermal annealing can reversibly tune the surface reconstruction and induced UMA. The feasibility of the IBE technique by adequately selecting IBE parameters for surface structure modification has been highlighted apart from conventional tailoring of the morphology for the tuning of UMA and introduces a new dimension to our understanding of self-assembled surface morphology evolution by IBE.
doi_str_mv 10.1063/5.0190202
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0190202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3074840964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-b8c0f7670c5f7a45f18c2761b166f59f5181a4d7a75ab935f5d9d73b50d1dec53</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKsH_0HAk8LWye5mkxylWCsUvOh5yWaTkpJN1mSL9t-b0p49DTPv4w3vIXRPYEGgqZ7pAoiAEsoLNCPARcEohUs0AyhJwQUT1-gmpR0AIbwSM_SzltHrlKzfYhs87rQcsI4hHRftt9ZrHY-iCRGr4KcYnNM9TtqZQqakh84dsPQ9nvZedk7jQW69nqzKR5tC5scDttlrtJP8tdJhY92QbtGVkS7pu_Oco6_V6-dyXWw-3t6XL5tCEV5ORccVGNYwUNQwWVNDuCpZQzrSNIYKQwknsu6ZZFR2oqKG9qJnVUehJ71WtJqjh5PvGMP3Xqep3YV99PllWwGreQ2iqTP1eKJUTp6iNu0Y7SDjoSXQHnttaXvuNbNPJzapnGjKPf0D_wHYp3mW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3074840964</pqid></control><display><type>article</type><title>Harnessing ion beam erosion engineering for controlled self-assembly and tunable magnetic anisotropy in epitaxial films</title><source>Alma/SFX Local Collection</source><creator>Bera, Anup Kumar ; Jamal, Md. Shahid ; Khanderao, Avinash Ganesh ; Singh, Sharanjeet ; Kumar, Dileep</creator><creatorcontrib>Bera, Anup Kumar ; Jamal, Md. Shahid ; Khanderao, Avinash Ganesh ; Singh, Sharanjeet ; Kumar, Dileep</creatorcontrib><description>The engineering of the surface morphology and the structure of the thin film is one of the essential technological assets for regulating the physical properties and functionalities of thin film-based devices. This study presents an easy and handy approach to tailor the surface structure of epitaxial thin films utilizing low-energy ion beam. Here, we investigate the evolution of the surface structure and magnetic anisotropy (MA) in epitaxial Fe/MgO (001) model systems subjected to multiple cycles of ion beam erosion (IBE) after thin film growth. The growth of Fe film occurs in the form of three–dimensional islands and exhibits intrinsic biaxial MA. Following a few cycles of IBE, an induced uniaxial magnetic anisotropy leads to a split in the hysteresis loop, and the film displays almost uniaxial magnetic switching behavior. More distinctly, we present a clear and conclusive evidence of (2 × 2) reconstruction of the Fe surface due to the atomic rearrangement by IBE. Furthermore, 57Fe isotope sensitive nuclear resonance scattering measurement provides insight into the depth-resolved magnetic information due to the modified surface topography. We also demonstrate that thermal annealing can reversibly tune the surface reconstruction and induced UMA. The feasibility of the IBE technique by adequately selecting IBE parameters for surface structure modification has been highlighted apart from conventional tailoring of the morphology for the tuning of UMA and introduces a new dimension to our understanding of self-assembled surface morphology evolution by IBE.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0190202</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Anisotropy ; Epitaxy ; Erosion control ; Evolution ; Film growth ; Hysteresis loops ; Ion beams ; Magnetic anisotropy ; Magnetic switching ; Morphology ; Parameter modification ; Physical properties ; Reconstruction ; Resonance scattering ; Self-assembly ; Surface structure ; Thin films</subject><ispartof>Journal of applied physics, 2024-07, Vol.136 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-b8c0f7670c5f7a45f18c2761b166f59f5181a4d7a75ab935f5d9d73b50d1dec53</cites><orcidid>0000-0002-7834-4773 ; 0000-0002-4782-167X ; 0000-0003-3471-9833 ; 0000-0001-6368-5009 ; 0009-0006-6424-5965</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bera, Anup Kumar</creatorcontrib><creatorcontrib>Jamal, Md. Shahid</creatorcontrib><creatorcontrib>Khanderao, Avinash Ganesh</creatorcontrib><creatorcontrib>Singh, Sharanjeet</creatorcontrib><creatorcontrib>Kumar, Dileep</creatorcontrib><title>Harnessing ion beam erosion engineering for controlled self-assembly and tunable magnetic anisotropy in epitaxial films</title><title>Journal of applied physics</title><description>The engineering of the surface morphology and the structure of the thin film is one of the essential technological assets for regulating the physical properties and functionalities of thin film-based devices. This study presents an easy and handy approach to tailor the surface structure of epitaxial thin films utilizing low-energy ion beam. Here, we investigate the evolution of the surface structure and magnetic anisotropy (MA) in epitaxial Fe/MgO (001) model systems subjected to multiple cycles of ion beam erosion (IBE) after thin film growth. The growth of Fe film occurs in the form of three–dimensional islands and exhibits intrinsic biaxial MA. Following a few cycles of IBE, an induced uniaxial magnetic anisotropy leads to a split in the hysteresis loop, and the film displays almost uniaxial magnetic switching behavior. More distinctly, we present a clear and conclusive evidence of (2 × 2) reconstruction of the Fe surface due to the atomic rearrangement by IBE. Furthermore, 57Fe isotope sensitive nuclear resonance scattering measurement provides insight into the depth-resolved magnetic information due to the modified surface topography. We also demonstrate that thermal annealing can reversibly tune the surface reconstruction and induced UMA. The feasibility of the IBE technique by adequately selecting IBE parameters for surface structure modification has been highlighted apart from conventional tailoring of the morphology for the tuning of UMA and introduces a new dimension to our understanding of self-assembled surface morphology evolution by IBE.</description><subject>Anisotropy</subject><subject>Epitaxy</subject><subject>Erosion control</subject><subject>Evolution</subject><subject>Film growth</subject><subject>Hysteresis loops</subject><subject>Ion beams</subject><subject>Magnetic anisotropy</subject><subject>Magnetic switching</subject><subject>Morphology</subject><subject>Parameter modification</subject><subject>Physical properties</subject><subject>Reconstruction</subject><subject>Resonance scattering</subject><subject>Self-assembly</subject><subject>Surface structure</subject><subject>Thin films</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKsH_0HAk8LWye5mkxylWCsUvOh5yWaTkpJN1mSL9t-b0p49DTPv4w3vIXRPYEGgqZ7pAoiAEsoLNCPARcEohUs0AyhJwQUT1-gmpR0AIbwSM_SzltHrlKzfYhs87rQcsI4hHRftt9ZrHY-iCRGr4KcYnNM9TtqZQqakh84dsPQ9nvZedk7jQW69nqzKR5tC5scDttlrtJP8tdJhY92QbtGVkS7pu_Oco6_V6-dyXWw-3t6XL5tCEV5ORccVGNYwUNQwWVNDuCpZQzrSNIYKQwknsu6ZZFR2oqKG9qJnVUehJ71WtJqjh5PvGMP3Xqep3YV99PllWwGreQ2iqTP1eKJUTp6iNu0Y7SDjoSXQHnttaXvuNbNPJzapnGjKPf0D_wHYp3mW</recordid><startdate>20240707</startdate><enddate>20240707</enddate><creator>Bera, Anup Kumar</creator><creator>Jamal, Md. Shahid</creator><creator>Khanderao, Avinash Ganesh</creator><creator>Singh, Sharanjeet</creator><creator>Kumar, Dileep</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7834-4773</orcidid><orcidid>https://orcid.org/0000-0002-4782-167X</orcidid><orcidid>https://orcid.org/0000-0003-3471-9833</orcidid><orcidid>https://orcid.org/0000-0001-6368-5009</orcidid><orcidid>https://orcid.org/0009-0006-6424-5965</orcidid></search><sort><creationdate>20240707</creationdate><title>Harnessing ion beam erosion engineering for controlled self-assembly and tunable magnetic anisotropy in epitaxial films</title><author>Bera, Anup Kumar ; Jamal, Md. Shahid ; Khanderao, Avinash Ganesh ; Singh, Sharanjeet ; Kumar, Dileep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-b8c0f7670c5f7a45f18c2761b166f59f5181a4d7a75ab935f5d9d73b50d1dec53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anisotropy</topic><topic>Epitaxy</topic><topic>Erosion control</topic><topic>Evolution</topic><topic>Film growth</topic><topic>Hysteresis loops</topic><topic>Ion beams</topic><topic>Magnetic anisotropy</topic><topic>Magnetic switching</topic><topic>Morphology</topic><topic>Parameter modification</topic><topic>Physical properties</topic><topic>Reconstruction</topic><topic>Resonance scattering</topic><topic>Self-assembly</topic><topic>Surface structure</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bera, Anup Kumar</creatorcontrib><creatorcontrib>Jamal, Md. Shahid</creatorcontrib><creatorcontrib>Khanderao, Avinash Ganesh</creatorcontrib><creatorcontrib>Singh, Sharanjeet</creatorcontrib><creatorcontrib>Kumar, Dileep</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bera, Anup Kumar</au><au>Jamal, Md. Shahid</au><au>Khanderao, Avinash Ganesh</au><au>Singh, Sharanjeet</au><au>Kumar, Dileep</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harnessing ion beam erosion engineering for controlled self-assembly and tunable magnetic anisotropy in epitaxial films</atitle><jtitle>Journal of applied physics</jtitle><date>2024-07-07</date><risdate>2024</risdate><volume>136</volume><issue>1</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The engineering of the surface morphology and the structure of the thin film is one of the essential technological assets for regulating the physical properties and functionalities of thin film-based devices. This study presents an easy and handy approach to tailor the surface structure of epitaxial thin films utilizing low-energy ion beam. Here, we investigate the evolution of the surface structure and magnetic anisotropy (MA) in epitaxial Fe/MgO (001) model systems subjected to multiple cycles of ion beam erosion (IBE) after thin film growth. The growth of Fe film occurs in the form of three–dimensional islands and exhibits intrinsic biaxial MA. Following a few cycles of IBE, an induced uniaxial magnetic anisotropy leads to a split in the hysteresis loop, and the film displays almost uniaxial magnetic switching behavior. More distinctly, we present a clear and conclusive evidence of (2 × 2) reconstruction of the Fe surface due to the atomic rearrangement by IBE. Furthermore, 57Fe isotope sensitive nuclear resonance scattering measurement provides insight into the depth-resolved magnetic information due to the modified surface topography. We also demonstrate that thermal annealing can reversibly tune the surface reconstruction and induced UMA. The feasibility of the IBE technique by adequately selecting IBE parameters for surface structure modification has been highlighted apart from conventional tailoring of the morphology for the tuning of UMA and introduces a new dimension to our understanding of self-assembled surface morphology evolution by IBE.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0190202</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7834-4773</orcidid><orcidid>https://orcid.org/0000-0002-4782-167X</orcidid><orcidid>https://orcid.org/0000-0003-3471-9833</orcidid><orcidid>https://orcid.org/0000-0001-6368-5009</orcidid><orcidid>https://orcid.org/0009-0006-6424-5965</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2024-07, Vol.136 (1)
issn 0021-8979
1089-7550
language eng
recordid cdi_scitation_primary_10_1063_5_0190202
source Alma/SFX Local Collection
subjects Anisotropy
Epitaxy
Erosion control
Evolution
Film growth
Hysteresis loops
Ion beams
Magnetic anisotropy
Magnetic switching
Morphology
Parameter modification
Physical properties
Reconstruction
Resonance scattering
Self-assembly
Surface structure
Thin films
title Harnessing ion beam erosion engineering for controlled self-assembly and tunable magnetic anisotropy in epitaxial films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A38%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harnessing%20ion%20beam%20erosion%20engineering%20for%20controlled%20self-assembly%20and%20tunable%20magnetic%20anisotropy%20in%20epitaxial%20films&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Bera,%20Anup%20Kumar&rft.date=2024-07-07&rft.volume=136&rft.issue=1&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0190202&rft_dat=%3Cproquest_scita%3E3074840964%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3074840964&rft_id=info:pmid/&rfr_iscdi=true