Terahertz nanoscopy: Advances, challenges, and the road ahead

Exploring nanoscale material properties through light-matter interactions is essential to unveil new phenomena and manipulate materials at the atomic level, paving the way for ground-breaking advancements in nanotechnology and materials science. Various elementary excitations and low-energy modes of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Physics Reviews 2024-06, Vol.11 (2)
Hauptverfasser: Guo, Xiao, Bertling, Karl, Donose, Bogdan C., Brünig, Michael, Cernescu, Adrian, Govyadinov, Alexander A., Rakić, Aleksandar D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Applied Physics Reviews
container_volume 11
creator Guo, Xiao
Bertling, Karl
Donose, Bogdan C.
Brünig, Michael
Cernescu, Adrian
Govyadinov, Alexander A.
Rakić, Aleksandar D.
description Exploring nanoscale material properties through light-matter interactions is essential to unveil new phenomena and manipulate materials at the atomic level, paving the way for ground-breaking advancements in nanotechnology and materials science. Various elementary excitations and low-energy modes of materials reside in the terahertz (THz) range of the electromagnetic spectrum ( 0.1 – 10   THz) and occur over various spatial and temporal scales. However, due to the diffraction limit, a slew of THz studies are restricted to drawing conclusions from the spatially varying THz responses around half of the probing wavelengths, i.e., from tens to a couple of hundred micrometers. To address this fundamental challenge, scanning near-field optical microscopy (SNOM), notably scattering-type SNOM (s-SNOM), combined with THz sources has been employed and is fueling growing interest in this technique across multiple disciplines. This review (1) provides an overview of the system developments of SNOM, (2) evaluates current approaches to understand and quantify light-matter interactions, (3) explores advances in THz SNOM applications, especially studies with THz nano-scale spatial responses employing an s-SNOM, and (4) envisions future challenges and potential development avenues for the practical use of THz s-SNOM.
doi_str_mv 10.1063/5.0189061
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0189061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>apr</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-eb237088203342e9733160767c358216e3699e582e5076fa394eacd7b954a1d43</originalsourceid><addsrcrecordid>eNp9j01Lw0AQhhdRsFYP_oO9KqbOZJNNVvBQil9Q8FLPYbo7MZG4KbtBqL--Ke3Bk6f34eWZgVeIa4QZglb3-QywNKDxREzQKExMBnj6h8_FRYxfABq0xol4XHGghsPwKz35Ptp-s32Qc_dD3nK8k7ahrmP_uWfyTg4Ny9CTk-MRuUtxVlMX-eqYU_Hx_LRavCbL95e3xXyZ2NSYIeF1qgooyxSUylI2hVKoodCFVXmZomaljeEROR_bmpTJmKwr1ibPCF2mpuLm8NeGPsbAdbUJ7TeFbYVQ7XdXeXXcPbq3BzfadqCh7f0_8g7t1lU0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Terahertz nanoscopy: Advances, challenges, and the road ahead</title><source>American Institute of Physics (AIP) Journals</source><creator>Guo, Xiao ; Bertling, Karl ; Donose, Bogdan C. ; Brünig, Michael ; Cernescu, Adrian ; Govyadinov, Alexander A. ; Rakić, Aleksandar D.</creator><creatorcontrib>Guo, Xiao ; Bertling, Karl ; Donose, Bogdan C. ; Brünig, Michael ; Cernescu, Adrian ; Govyadinov, Alexander A. ; Rakić, Aleksandar D.</creatorcontrib><description>Exploring nanoscale material properties through light-matter interactions is essential to unveil new phenomena and manipulate materials at the atomic level, paving the way for ground-breaking advancements in nanotechnology and materials science. Various elementary excitations and low-energy modes of materials reside in the terahertz (THz) range of the electromagnetic spectrum ( 0.1 – 10   THz) and occur over various spatial and temporal scales. However, due to the diffraction limit, a slew of THz studies are restricted to drawing conclusions from the spatially varying THz responses around half of the probing wavelengths, i.e., from tens to a couple of hundred micrometers. To address this fundamental challenge, scanning near-field optical microscopy (SNOM), notably scattering-type SNOM (s-SNOM), combined with THz sources has been employed and is fueling growing interest in this technique across multiple disciplines. This review (1) provides an overview of the system developments of SNOM, (2) evaluates current approaches to understand and quantify light-matter interactions, (3) explores advances in THz SNOM applications, especially studies with THz nano-scale spatial responses employing an s-SNOM, and (4) envisions future challenges and potential development avenues for the practical use of THz s-SNOM.</description><identifier>ISSN: 1931-9401</identifier><identifier>EISSN: 1931-9401</identifier><identifier>DOI: 10.1063/5.0189061</identifier><identifier>CODEN: APRPG5</identifier><language>eng</language><ispartof>Applied Physics Reviews, 2024-06, Vol.11 (2)</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-eb237088203342e9733160767c358216e3699e582e5076fa394eacd7b954a1d43</citedby><cites>FETCH-LOGICAL-c299t-eb237088203342e9733160767c358216e3699e582e5076fa394eacd7b954a1d43</cites><orcidid>0000-0002-4615-2240 ; 0009-0002-7775-5017 ; 0000-0003-4864-0472 ; 0000-0002-2077-0315 ; 0000-0003-1087-2315 ; 0000-0003-1935-9489 ; 0000-0003-2085-3820</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apr/article-lookup/doi/10.1063/5.0189061$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>313,314,776,780,788,790,4498,27899,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Guo, Xiao</creatorcontrib><creatorcontrib>Bertling, Karl</creatorcontrib><creatorcontrib>Donose, Bogdan C.</creatorcontrib><creatorcontrib>Brünig, Michael</creatorcontrib><creatorcontrib>Cernescu, Adrian</creatorcontrib><creatorcontrib>Govyadinov, Alexander A.</creatorcontrib><creatorcontrib>Rakić, Aleksandar D.</creatorcontrib><title>Terahertz nanoscopy: Advances, challenges, and the road ahead</title><title>Applied Physics Reviews</title><description>Exploring nanoscale material properties through light-matter interactions is essential to unveil new phenomena and manipulate materials at the atomic level, paving the way for ground-breaking advancements in nanotechnology and materials science. Various elementary excitations and low-energy modes of materials reside in the terahertz (THz) range of the electromagnetic spectrum ( 0.1 – 10   THz) and occur over various spatial and temporal scales. However, due to the diffraction limit, a slew of THz studies are restricted to drawing conclusions from the spatially varying THz responses around half of the probing wavelengths, i.e., from tens to a couple of hundred micrometers. To address this fundamental challenge, scanning near-field optical microscopy (SNOM), notably scattering-type SNOM (s-SNOM), combined with THz sources has been employed and is fueling growing interest in this technique across multiple disciplines. This review (1) provides an overview of the system developments of SNOM, (2) evaluates current approaches to understand and quantify light-matter interactions, (3) explores advances in THz SNOM applications, especially studies with THz nano-scale spatial responses employing an s-SNOM, and (4) envisions future challenges and potential development avenues for the practical use of THz s-SNOM.</description><issn>1931-9401</issn><issn>1931-9401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9j01Lw0AQhhdRsFYP_oO9KqbOZJNNVvBQil9Q8FLPYbo7MZG4KbtBqL--Ke3Bk6f34eWZgVeIa4QZglb3-QywNKDxREzQKExMBnj6h8_FRYxfABq0xol4XHGghsPwKz35Ptp-s32Qc_dD3nK8k7ahrmP_uWfyTg4Ny9CTk-MRuUtxVlMX-eqYU_Hx_LRavCbL95e3xXyZ2NSYIeF1qgooyxSUylI2hVKoodCFVXmZomaljeEROR_bmpTJmKwr1ibPCF2mpuLm8NeGPsbAdbUJ7TeFbYVQ7XdXeXXcPbq3BzfadqCh7f0_8g7t1lU0</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Guo, Xiao</creator><creator>Bertling, Karl</creator><creator>Donose, Bogdan C.</creator><creator>Brünig, Michael</creator><creator>Cernescu, Adrian</creator><creator>Govyadinov, Alexander A.</creator><creator>Rakić, Aleksandar D.</creator><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4615-2240</orcidid><orcidid>https://orcid.org/0009-0002-7775-5017</orcidid><orcidid>https://orcid.org/0000-0003-4864-0472</orcidid><orcidid>https://orcid.org/0000-0002-2077-0315</orcidid><orcidid>https://orcid.org/0000-0003-1087-2315</orcidid><orcidid>https://orcid.org/0000-0003-1935-9489</orcidid><orcidid>https://orcid.org/0000-0003-2085-3820</orcidid></search><sort><creationdate>202406</creationdate><title>Terahertz nanoscopy: Advances, challenges, and the road ahead</title><author>Guo, Xiao ; Bertling, Karl ; Donose, Bogdan C. ; Brünig, Michael ; Cernescu, Adrian ; Govyadinov, Alexander A. ; Rakić, Aleksandar D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-eb237088203342e9733160767c358216e3699e582e5076fa394eacd7b954a1d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Xiao</creatorcontrib><creatorcontrib>Bertling, Karl</creatorcontrib><creatorcontrib>Donose, Bogdan C.</creatorcontrib><creatorcontrib>Brünig, Michael</creatorcontrib><creatorcontrib>Cernescu, Adrian</creatorcontrib><creatorcontrib>Govyadinov, Alexander A.</creatorcontrib><creatorcontrib>Rakić, Aleksandar D.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><jtitle>Applied Physics Reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Xiao</au><au>Bertling, Karl</au><au>Donose, Bogdan C.</au><au>Brünig, Michael</au><au>Cernescu, Adrian</au><au>Govyadinov, Alexander A.</au><au>Rakić, Aleksandar D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Terahertz nanoscopy: Advances, challenges, and the road ahead</atitle><jtitle>Applied Physics Reviews</jtitle><date>2024-06</date><risdate>2024</risdate><volume>11</volume><issue>2</issue><issn>1931-9401</issn><eissn>1931-9401</eissn><coden>APRPG5</coden><abstract>Exploring nanoscale material properties through light-matter interactions is essential to unveil new phenomena and manipulate materials at the atomic level, paving the way for ground-breaking advancements in nanotechnology and materials science. Various elementary excitations and low-energy modes of materials reside in the terahertz (THz) range of the electromagnetic spectrum ( 0.1 – 10   THz) and occur over various spatial and temporal scales. However, due to the diffraction limit, a slew of THz studies are restricted to drawing conclusions from the spatially varying THz responses around half of the probing wavelengths, i.e., from tens to a couple of hundred micrometers. To address this fundamental challenge, scanning near-field optical microscopy (SNOM), notably scattering-type SNOM (s-SNOM), combined with THz sources has been employed and is fueling growing interest in this technique across multiple disciplines. This review (1) provides an overview of the system developments of SNOM, (2) evaluates current approaches to understand and quantify light-matter interactions, (3) explores advances in THz SNOM applications, especially studies with THz nano-scale spatial responses employing an s-SNOM, and (4) envisions future challenges and potential development avenues for the practical use of THz s-SNOM.</abstract><doi>10.1063/5.0189061</doi><tpages>39</tpages><orcidid>https://orcid.org/0000-0002-4615-2240</orcidid><orcidid>https://orcid.org/0009-0002-7775-5017</orcidid><orcidid>https://orcid.org/0000-0003-4864-0472</orcidid><orcidid>https://orcid.org/0000-0002-2077-0315</orcidid><orcidid>https://orcid.org/0000-0003-1087-2315</orcidid><orcidid>https://orcid.org/0000-0003-1935-9489</orcidid><orcidid>https://orcid.org/0000-0003-2085-3820</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1931-9401
ispartof Applied Physics Reviews, 2024-06, Vol.11 (2)
issn 1931-9401
1931-9401
language eng
recordid cdi_scitation_primary_10_1063_5_0189061
source American Institute of Physics (AIP) Journals
title Terahertz nanoscopy: Advances, challenges, and the road ahead
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T09%3A51%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Terahertz%20nanoscopy:%20Advances,%20challenges,%20and%20the%20road%20ahead&rft.jtitle=Applied%20Physics%20Reviews&rft.au=Guo,%20Xiao&rft.date=2024-06&rft.volume=11&rft.issue=2&rft.issn=1931-9401&rft.eissn=1931-9401&rft.coden=APRPG5&rft_id=info:doi/10.1063/5.0189061&rft_dat=%3Cscitation_cross%3Eapr%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true